Skewed X-chromosome Inactivation in Women with Idiopathic Intellectual Disability is Indicative of Pathogenic Variants

Vissers LELM, Gilissen C, Veltman JA (2016) Genetic studies in intellectual disability and related disorders. Nat Rev Genet. 17(1):9–18. https://doi.org/10.1038/nrg3999

Maulik PK, Mascarenhas MN, Mathers CD, Dua T, Saxena S (2011) Prevalence of intellectual disability: a meta-analysis of population-based studies. Res Dev Disabil 32(2):419–436. https://doi.org/10.1016/j.ridd.2010.12.018

Article  PubMed  Google Scholar 

Savatt JM, Myers SM (2021) Genetic testing in neurodevelopmental disorders. Front Pediatr 9:526779. https://doi.org/10.3389/fped.2021.526779

Article  PubMed  PubMed Central  Google Scholar 

Neri G, Schwartz CE, Lubs HA, Stevenson RE (2018) X-linked intellectual disability update 2017. Am J Med Genet Part A. 176(6):1375–88. https://doi.org/10.1002/ajmg.a.38710

Schwartz CE, Louie RJ, Toutain A, Skinner C, Friez MJ, Stevenson RE (2023) <scp>X‐Linked</scp> intellectual disability update 2022. Am J Med Genet Part A. 191(1):144–59. https://doi.org/10.1002/ajmg.a.63008

Ropers HH (2010) Genetics of early onset cognitive impairment [Internet]. Vol. 11, Annual Review of Genomics and Human Genetics. H. H. Ropers, Max Planck Institute for Molecular Genetics, D-14195 Berlin, Germany; p. 161–87. https://doi.org/10.1146/annurev-genom-082509-141640

Fieremans N, Van Esch H, Holvoet M, Van Goethem G, Devriendt K, Rosello M, et al (2016) Identification of Intellectual Disability Genes in Female Patients with a Skewed X-Inactivation Pattern. Hum Mutat. 37(8):804–11. https://doi.org/10.1002/humu.23012

Baron-Cohen S, Lombardo M V., Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R (2011) Why Are Autism Spectrum Conditions More Prevalent in Males? PLoS Biol. 9(6):e1001081. https://doi.org/10.1371/journal.pbio.1001081

Werling DM, Geschwind DH (2013) Sex differences in autism spectrum disorders. Curr Opin Neurol. 26(2):146–53. https://doi.org/10.1097/WCO.0b013e32835ee548

Jacquemont S, Coe BP, Hersch M, Duyzend MH, Krumm N, Bergmann S, et al (2014) A Higher Mutational Burden in Females Supports a “Female Protective Model” in Neurodevelopmental Disorders. Am J Hum Genet. 94(3):415–25. https://doi.org/10.1016/j.ajhg.2014.02.001

Amos-Landgraf JM, Cottle A, Plenge RM, Friez M, Schwartz CE, Longshore J, et al (2006) X Chromosome–Inactivation Patterns of 1,005 Phenotypically Unaffected Females. Am J Hum Genet. 79(3):493–9. https://doi.org/10.1086/507565

Ziats CA, Schwartz CE, Gecz J, Shaw M, Field MJ, Stevenson RE, et al (2020) X‐linked intellectual disability: Phenotypic expression in carrier females. Clin Genet. 97(3):418–25. https://doi.org/10.1111/cge.13667

Vianna EQ, Piergiorge RM, Gonçalves AP, dos Santos JM, Calassara V, Rosenberg C, et al (2020) Understanding the Landscape of X-linked Variants Causing Intellectual Disability in Females Through Extreme X Chromosome Inactivation Skewing. Mol Neurobiol. 57(9):3671–84. https://doi.org/10.1007/s12035-020-01981-8

Lyon MF (1962) Sex chromatin and gene action in the mammalian X-chromosome. Am J Hum Genet 14:135–148

CAS  PubMed  PubMed Central  Google Scholar 

Wutz A (2011) Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet. 12(8):542–53. https://doi.org/10.1038/nrg3035

Galupa R, Heard E (2018) X-Chromosome Inactivation: A Crossroads Between Chromosome Architecture and Gene Regulation. Annu Rev Genet. 52(1):535–66. https://doi.org/10.1146/annurev-genet-120116-024611

Migeon BR (2020) X-linked diseases: susceptible females. Genet Med. 22(7):1156–74. https://doi.org/10.1038/s41436-020-0779-4

Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW (1992) Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet 51(6):1229–1239

CAS  PubMed  PubMed Central  Google Scholar 

Bittel DC, Theodoro MF, Kibiryeva N, Fischer W, Talebizadeh Z, Butler MG (2008) Comparison of X-chromosome inactivation patterns in multiple tissues from human females. J Med Genet. 45(5):309–13. https://doi.org/10.1136/jmg.2007.055244

Seo GH, Kim T, Choi IH, Park J, Lee J, Kim S, et al (2020) Diagnostic yield and clinical utility of whole exome sequencing using an automated variant prioritization system, <scp>EVIDENCE</scp>. Clin Genet. 98(6):562–70. https://doi.org/10.1111/cge.13848

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 17(5):405–23. https://doi.org/10.1038/gim.2015.30

Vicoso B, Charlesworth B (2006) Evolution on the X chromosome: unusual patterns and processes. Nat Rev Genet. 7(8):645–53. https://doi.org/10.1038/nrg1914

Zechner U, Wilda M, Kehrer-Sawatzki H, Vogel W, Fundele R, Hameister H (2001) A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution? Trends Genet. 17(12):697–701. https://doi.org/10.1016/S0168-9525(01)02446-5

Turner TN, Wilfert AB, Bakken TE, Bernier RA, Pepper MR, Zhang Z, et al (2019) Sex-Based Analysis of De Novo Variants in Neurodevelopmental Disorders. Am J Hum Genet. 105(6):1274–85. https://doi.org/10.1016/j.ajhg.2019.11.003

Gribnau J, Barakat TS (2017) X-chromosome inactivation and its implications for human disease. bioRxiv 076950. https://doi.org/10.1101/076950

Shvetsova E, Sofronova A, Monajemi R, Gagalova K, Draisma HHM, White SJ, et al (2019) Skewed X-inactivation is common in the general female population. Eur J Hum Genet. 27(3):455–65. https://doi.org/10.1038/s41431-018-0291-3

Fang H, Deng X, Disteche CM (2021) X-factors in human disease: impact of gene content and dosage regulation. Hum Mol Genet. 30(R2):R285–95. https://doi.org/10.1093/hmg/ddab221

Plenge RM, Hendrich BD, Schwartz C, Arena JF, Naumova A, Sapienza C, et al (1997) A promoter mutation in the XIST gene in two unrelated families with skewed X-chromosome inactivation. Nat Genet. 17(3):353–6. https://doi.org/10.1038/ng1197-353

Pugacheva EM, Tiwari VK, Abdullaev Z, Vostrov AA, Flanagan PT, Quitschke WW, et al (2005) Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation. Hum Mol Genet. 14(7):953–65. https://doi.org/10.1093/hmg/ddi089

Sánchez-Luquez KY, Carpena MX, Karam SM, Tovo-Rodrigues L (2022) The contribution of whole-exome sequencing to intellectual disability diagnosis and knowledge of underlying molecular mechanisms: A systematic review and meta-analysis. Mutat Res Mutat Res. 790:108428. https://doi.org/10.1016/j.mrrev.2022.108428

Moresco G, Costanza J, Santaniello C, Rondinone O, Grilli F, Prada E, et al (2021) A novel de novo DDX3X missense variant in a female with brachycephaly and intellectual disability: a case report. Ital J Pediatr. 47(1):81. https://doi.org/10.1186/s13052-021-01033-4

Cong Y, So V, Tijssen MAJ, Verbeek DS, Reggiori F, Mauthe M (2021) WDR45 , one gene associated with multiple neurodevelopmental disorders. Autophagy. 17(12):3908–23. https://doi.org/10.1080/15548627.2021.1899669

Morel Swols D, Foster J, Tekin M (2017) KBG syndrome. Orphanet J Rare Dis 12(1):183. https://doi.org/10.1186/s13023-017-0736-8

Bar C, Barcia G, Jennesson M, Le Guyader G, Schneider A, Mignot C, et al (2020) Expanding the genetic and phenotypic relevance of KCNB1 variants in developmental and epileptic encephalopathies: 27 new patients and overview of the literature. Hum Mutat. 41(1):69–80. https://doi.org/10.1002/humu.23915

Snijders Blok L, Madsen E, Juusola J, Gilissen C, Baralle D, Reijnders MRF, et al (2015) Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling. Am J Hum Genet. 97(2):343–52. https://doi.org/10.1016/j.ajhg.2015.07.004

Tukiainen T, Villani A-C, Yen A, Rivas MA, Marshall JL, Satija R, et al (2017) Landscape of X chromosome inactivation across human tissues. Nature. 550(7675):244–8. https://doi.org/10.1038/nature24265

Catino G, Genovese S, Tommaso S, Orlando V, Petti MT, Bernardi ML, et al (2022) Reciprocal Xp11.4p11.3 microdeletion/microduplication spanning USP9X , DDX3X , and CASK genes in two patients with syndromic intellectual disability. Am J Med Genet Part A. https://doi.org/10.1002/ajmg.a.62694

de Castro Fonseca M, de Oliveira JF, Araujo BHS, Canateli C, do Prado PFV, Amorim Neto DP, et al (2021) Molecular and cellular basis of hyperassembly and protein aggregation driven by a rare pathogenic mutation in DDX3X. iScience. 24(8):102841. https://doi.org/10.1016/j.isci.2021.102841

Venkataramanan S, Gadek M, Calviello L, Wilkins K, Floor SN (2021) DDX3X and DDX3Y are redundant in protein synthesis. RNA 27(12):1577–1588. https://doi.org/10.1261/rna.078926.121

Rauschendorf M-A, Zimmer J, Ohnmacht C, Vogt PH (2014) DDX3X, the X homologue of AZFa gene DDX3Y, expresses a complex pattern of transcript variants only in the male germ line. MHR Basic Sci Reprod Med. 20(12):1208–22. https://doi.org/10.1093/molehr/gau081

Shen H, Yanas A, Owens MC, Zhang C, Fritsch C, Fare CM, et al (2022) Sexually dimorphic RNA helicases DDX3X and DDX3Y differentially regulate RNA metabolism through phase separation. Mol Cell. https://doi.org/10.1016/j.molcel.2022.04.022

Noda M, Ito H, Nagata K (2021) Physiological significance of WDR45, a responsible gene for β-propeller protein associated neurodegeneration (BPAN), in brain development. Sci Rep. 11(1):22568. https://doi.org/10.1038/s41598-021-02123-3

Ji C, Zhao YG (2021) The BPAN and intellectual disability disease proteins WDR45 and WDR45B modulate autophagosome-lysosome fusion. Autophagy. 17(7):1783–4. https://doi.org/10.1080/15548627.2021.1924039

Haack TB, Hogarth P, Kruer MC, Gregory A, Wieland T, Schwarzmayr T, et al (2012) Exome Sequencing Reveals De Novo WDR45 Mutations Causing a Phenotypically Distinct, X-Linked Dominant Form of NBIA. Am J Hum Genet. 91(6):1144–9. https://doi.org/10.1016/j.ajhg.2012.10.019

Saitsu H, Nishimura T, Muramatsu K, Kodera H, Kumada S, Sugai K, et al (2012) De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet. 45(4):445–9. https://doi.org/10.1038/ng.2562

Pavlu-Pereira H, Silva MJ, Florindo C, Sequeira S, Ferreira AC, Duarte S, et al (2020) Pyruvate dehydrogenase complex deficiency: updating the clinical, metabolic and mutational landscapes in a cohort of Portuguese patients. Orphanet J Rare Dis. 15(1):298. https://doi.org/10.1186/s13023-020-01586-3

Ganetzky R, McCormick EM, Falk MJ (2021) Primary pyruvate dehydrogenase complex deficiency overview. In: Adam MP et. al. (ed) GeneReviews®. University of Washington, Seattle. Bookshelf ID: NBK571223. https://www.ncbi.nlm.nih.gov/books/NBK571223/?report=reader

Willemsen M, Rodenburg RJT, Teszas A, van den Heuvel L, Kosztolanyi G, Morava E (2006) Females with PDHA1 gene mutations: A diagnostic challenge. Mitochondrion. 6(3):155–9. https://doi.org/10.1016/j.mito.2006.03.001

Kuechler A, Willemsen MH, Albrecht B, Bacino CA, Bartholomew DW, van Bokhoven H, et al (2015) De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum. Hum Genet. 134(1):97–109. https://doi.org/10.1007/s00439-014-1498-1

Shi Y, Seto E, Chang L-S, Shenk T (1991) Transcriptional repression by YY1, a human GLI-Krüippel-related protein, and relief of repression by adenovirus E1A protein. Cell. 67(2):377–88. https://doi.org/10.1016/0092-8674(91)90189-6

Thorvaldsen JL, Weaver JR, Bartolomei MS (2011) A YY1 Bridge for X Inactivation. Cell. 146(1):11–3. https://doi.org/10.1016/j.cell.2011.06.029

Makhlouf M, Ouimette J-F, Oldfield A, Navarro P, Neuillet D, Rougeulle C (2014) A prominent and conserved role for YY1 in Xist transcriptional activation. Nat Commun. 5(1):4878. https://doi.org/10.1038/ncomms5878

Chen C, Shi W, Balaton BP, Matthews AM, Li Y, Arenillas DJ, et al (2016) YY1 binding association with sex-biased transcription revealed through X-linked transcript levels and allelic binding analyses. Sci Rep. 6(1):37324. https://doi.org/10.1038/srep37324

dos Santos SR, Piergiorge RM, Rocha J, Abdala BB, Gonçalves AP, Pimentel MMG, et al (2022) A de novo YY1 missense variant expanding the Gabriele-de Vries syndrome phenotype and affecting X-chromosome inactivation. Metab Brain Dis. https://doi.org/10.1007/s11011-022-01024-2

留言 (0)

沒有登入
gif