Delivery of miR-130a-3p Through Adipose-Derived Stem Cell-Secreted EVs Protects Against Diabetic Peripheral Neuropathy via DNMT1/NRF2/HIF1α/ACTA1 Axis

Iqbal Z, Azmi S, Yadav R, Ferdousi M, Kumar M, Cuthbertson DJ, Lim J, Malik RA et al (2018) Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy. Clin Ther 40(6):828–849. https://doi.org/10.1016/j.clinthera.2018.04.001

Article  PubMed  Google Scholar 

Selvarajah D, Kar D, Khunti K, Davies MJ, Scott AR, Walker J, Tesfaye S (2019) Diabetic peripheral neuropathy: advances in diagnosis and strategies for screening and early intervention. Lancet Diabetes Endocrinol 7(12):938–948. https://doi.org/10.1016/S2213-8587(19)30081-6

Article  PubMed  Google Scholar 

Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL (2012) Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 11(6):521–534. https://doi.org/10.1016/S1474-4422(12)70065-0

Article  PubMed  PubMed Central  Google Scholar 

Goncalves NP, Vaegter CB, Andersen H, Ostergaard L, Calcutt NA, Jensen TS (2017) Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat Rev Neurol 13(3):135–147. https://doi.org/10.1038/nrneurol.2016.201

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang SH, Shurin GV, Khosravi H, Kazi R, Kruglov O, Shurin MR, Bunimovich YL (2020) Immunomodulation by Schwann cells in disease. Cancer Immunol Immunother 69(2):245–253. https://doi.org/10.1007/s00262-019-02424-7

Article  PubMed  Google Scholar 

Du W, Wang N, Li F, Jia K, An J, Liu Y, Wang Y, Zhu L et al (2019) STAT3 phosphorylation mediates high glucose-impaired cell autophagy in an HDAC1-dependent and -independent manner in Schwann cells of diabetic peripheral neuropathy. FASEB J 33(7):8008–8021. https://doi.org/10.1096/fj.201900127R

Article  CAS  PubMed  Google Scholar 

van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228. https://doi.org/10.1038/nrm.2017.125

Article  CAS  PubMed  Google Scholar 

Wang L, Chopp M, Szalad A, Lu X, Zhang Y, Wang X, Cepparulo P, Lu M et al (2020) Exosomes derived from Schwann cells ameliorate peripheral neuropathy in type 2 diabetic mice. Diabetes 69(4):749–759. https://doi.org/10.2337/db19-0432

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang C, Xu X, Chen J, Kang Y, Guo J, Duscher D, Yang X, Guo G et al (2020) The construction and analysis of lncRNA-miRNA-mRNA competing endogenous RNA network of Schwann cells in diabetic peripheral neuropathy. Front Bioeng Biotechnol 8:490. https://doi.org/10.3389/fbioe.2020.00490

Article  PubMed  PubMed Central  Google Scholar 

Xiao F, Yu J, Liu B, Guo Y, Li K, Deng J, Zhang J, Wang C et al (2014) A novel function of microRNA 130a–3p in hepatic insulin sensitivity and liver steatosis. Diabetes 63(8):2631–2642. https://doi.org/10.2337/db13-1689

Article  CAS  PubMed  Google Scholar 

Jiang X, Ruan XL, Xue YX, Yang S, Shi M, Wang LN (2020) Metformin reduces the senescence of renal tubular epithelial cells in diabetic nephropathy via the MBNL1/miR-130a-3p/STAT3 pathway. Oxid Med Cell Longev 2020:8708236. https://doi.org/10.1155/2020/8708236

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren W, Gao L, Song J (2018) Structural basis of DNMT1 and DNMT3A-mediated DNA methylation. Genes (Basel) 9(12):620. https://doi.org/10.3390/genes9120620

Article  CAS  PubMed  Google Scholar 

Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44. https://doi.org/10.1016/j.freeradbiomed.2013.02.008

Article  CAS  PubMed  Google Scholar 

Tang W, Chen X, Liu H, Lv Q, Zou J, Shi Y, Liu Z (2018) Expression of Nrf2 promotes Schwann cell-mediated sciatic nerve recovery in diabetic peripheral neuropathy. Cell Physiol Biochem 46(5):1879–1894. https://doi.org/10.1159/000489373

Article  CAS  PubMed  Google Scholar 

Zhang P, Yao Q, Lu L, Li Y, Chen PJ, Duan C (2014) Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep 6(6):1110–1121. https://doi.org/10.1016/j.celrep.2014.02.011

Article  CAS  PubMed  Google Scholar 

Xu J, Liu X, Zhao F, Zhang Y, Wang Z (2020) HIF1alpha overexpression enhances diabetic wound closure in high glucose and low oxygen conditions by promoting adipose-derived stem cell paracrine function and survival. Stem Cell Res Ther 11(1):148. https://doi.org/10.1186/s13287-020-01654-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang H, He J, Johnson D, Wei Y, Liu Y, Wang S, Lutty GA, Duh EJ et al (2015) Deletion of placental growth factor prevents diabetic retinopathy and is associated with Akt activation and HIF1alpha-VEGF pathway inhibition. Diabetes 64(1):200–212. https://doi.org/10.2337/db14-0016

Article  CAS  PubMed  Google Scholar 

Laing NG, Dye DE, Wallgren-Pettersson C, Richard G, Monnier N, Lillis S, Winder TL, Lochmuller H et al (2009) Mutations and polymorphisms of the skeletal muscle alpha-actin gene (ACTA1). Hum Mutat 30(9):1267–1277. https://doi.org/10.1002/humu.21059

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamazaki S, Yamaji T, Murai N, Yamamoto H, Matsuda T, Price RD, Matsuoka N (2012) FK1706, a novel non-immunosuppressive immunophilin ligand, modifies gene expression in the dorsal root ganglia during painful diabetic neuropathy. Neurol Res 34(5):469–477. https://doi.org/10.1179/1743132812Y.0000000029

Article  CAS  PubMed  Google Scholar 

Xu C, Hou B, He P, Ma P, Yang X, Yang X, Zhang L, Qiang G et al (2020) Neuroprotective effect of salvianolic acid A against diabetic peripheral neuropathy through modulation of Nrf2. Oxid Med Cell Longev 2020:6431459. https://doi.org/10.1155/2020/6431459

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuo HD, Wu R, Li S, Yang AY, Kong AN (2019) Anthocyanin delphinidin prevents neoplastic transformation of mouse skin JB6 P+ cells: epigenetic re-activation of Nrf2-ARE pathway. AAPS J 21(5):83. https://doi.org/10.1208/s12248-019-0355-5

Article  CAS  PubMed  Google Scholar 

Giatti S, Mastrangelo R, D’Antonio M, Pesaresi M, Romano S, Diviccaro S, Caruso D, Mitro N et al (2018) Neuroactive steroids and diabetic complications in the nervous system. Front Neuroendocrinol 48:58–69. https://doi.org/10.1016/j.yfrne.2017.07.006

Article  CAS  PubMed  Google Scholar 

Javed S, Alam U, Malik RA (2015) Treating diabetic neuropathy: present strategies and emerging solutions. Rev Diabet Stud 12(1–2):63–83. https://doi.org/10.1900/RDS.2015.12.63

Article  PubMed  PubMed Central  Google Scholar 

Singh R, Kishore L, Kaur N (2014) Diabetic peripheral neuropathy: current perspective and future directions. Pharmacol Res 80:21–35. https://doi.org/10.1016/j.phrs.2013.12.005

Article  CAS  PubMed  Google Scholar 

Bonhof GJ, Herder C, Strom A, Papanas N, Roden M, Ziegler D (2019) Emerging biomarkers, tools, and treatments for diabetic polyneuropathy. Endocr Rev 40(1):153–192. https://doi.org/10.1210/er.2018-00107

Article  PubMed  Google Scholar 

Liu YP, Shao SJ, Guo HD (2020) Schwann cells apoptosis is induced by high glucose in diabetic peripheral neuropathy. Life Sci 248:117459. https://doi.org/10.1016/j.lfs.2020.117459

Article  CAS  PubMed  Google Scholar 

Cui J, Placzek WJ (2018) Post-transcriptional regulation of anti-apoptotic BCL2 family members. Int J Mol Sci 19(1):308. https://doi.org/10.3390/ijms19010308

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pena-Blanco A, Garcia-Saez AJ (2018) Bax, Bak and beyond — mitochondrial performance in apoptosis. FEBS J 285(3):416–431. https://doi.org/10.1111/febs.14186

Article  CAS  PubMed  Google Scholar 

Crowley LC, Waterhouse NJ (2016) Detecting cleaved caspase-3 in apoptotic cells by flow cytometry. Cold Spring Harb Protoc 2016:pdb.prot087312. https://doi.org/10.1101/pdb.prot087312

Zhang M, Zhao S, Xu C, Shen Y, Huang J, Shen S, Li Y, Chen X (2020) Ablation of lncRNA MIAT mitigates high glucose-stimulated inflammation and apoptosis of podocyte via miR-130a-3p/TLR4 signaling axis. Biochem Biophys Res Commun 533(3):429–436. https://doi.org/10.1016/j.bbrc.2020.09.034

Article  CAS  PubMed  Google Scholar 

Yan J, Tie G, Wang S, Tutto A, DeMarco N, Khair L, Fazzio TG, Messina LM (2018) Diabetes impairs wound healing by Dnmt1-dependent dysregulation of hematopoietic stem cells differentiation towards macrophages. Nat Commun 9(1):33. https://doi.org/10.1038/s41467-017-02425-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chavali V, Tyagi SC, Mishra PK (2012) MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochem Biophys Res Commun 425(3):668–672. https://doi.org/10.1016/j.bbrc.2012.07.105

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar A, Mittal R (2017) Nrf2: a potential therapeutic target for diabetic neuropathy. Inflammopharmacology 25(4):393–402. https://doi.org/10.1007/s10787-017-0339-y

Article  CAS  PubMed  Google Scholar 

Bi Z, Zhang Q, Fu Y, Wadgaonkar P, Zhang W, Almutairy B, Xu L, Rice M et al (2020) Nrf2 and HIF1alpha converge to arsenic-induced metabolic reprogramming and the formation of the cancer stem-like cells. Theranostics 10(9):4134–4149. https://doi.org/10.7150/thno.42903

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif