Effect of the gut microbiota and their metabolites on postoperative intestinal motility and its underlying mechanisms

Chapman SJ, et al. Postoperative ileus following major colorectal surgery. Br J Surg. 2018;105(7):797–810.

Article  CAS  PubMed  Google Scholar 

Scarborough JE, et al. Associations of specific postoperative complications with outcomes after elective colon resection: a procedure-targeted approach toward surgical quality improvement. JAMA Surg. 2017;152(2):e164681.

Article  PubMed  Google Scholar 

Buscail E, Deraison C. Postoperative ileus: a pharmacological perspective. Br J Pharmacol. 2022;179(13):3283–305.

Article  CAS  PubMed  Google Scholar 

Baig MK, Wexner SD. Postoperative ileus: a review. Dis Colon Rectum. 2004;47(4):516–26.

Article  PubMed  Google Scholar 

van Bree SH, et al. New therapeutic strategies for postoperative ileus. Nat Rev Gastroenterol Hepatol. 2012;9(11):675–83.

Article  PubMed  Google Scholar 

Barbara G, et al. The intestinal microenvironment and functional gastrointestinal disorders. Gastroenterology. 2016;150:1305–18.

Article  Google Scholar 

Bienenstock J, Kunze W, Forsythe P. Microbiota and the gut-brain axis. Nutr Rev. 2015;73(Suppl 1):28–31.

Article  PubMed  Google Scholar 

Wagner NRF, et al. Postoperative changes in intestinal microbiota and use of probiotics in roux-en-y gastric bypass and sleeve vertical gastrectomy: an integrative review. Arq Bras Cir Dig. 2018;31(4):e1400.

Article  PubMed  PubMed Central  Google Scholar 

Jandhyala SM, et al. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–803.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guyton K, Alverdy JC. The gut microbiota and gastrointestinal surgery. Nat Rev Gastroenterol Hepatol. 2017;14(1):43–54.

Article  CAS  PubMed  Google Scholar 

Shogan BD, et al. Intestinal anastomotic injury alters spatially defined microbiome composition and function. Microbiome. 2014;2:35.

Article  PubMed  PubMed Central  Google Scholar 

Reddy BS, et al. Surgical manipulation of the large intestine increases bacterial translocation in patients undergoing elective colorectal surgery. Colorectal Dis. 2006;8(7):596–600.

Article  CAS  PubMed  Google Scholar 

Barbara G, et al. Interactions between commensal bacteria and gut sensorimotor function in health and disease. Am J Gastroenterol. 2005;100(11):2560–8.

Article  CAS  PubMed  Google Scholar 

Ge X, et al. Potential role of fecal microbiota from patients with slow transit constipation in the regulation of gastrointestinal motility. Sci Rep. 2017;7(1):441.

Article  PubMed  PubMed Central  Google Scholar 

Bayer S, et al. Effects of GABA on circular smooth muscle spontaneous activities of rat distal colon. Life Sci. 2002;71(8):911–25.

Article  CAS  PubMed  Google Scholar 

Husebye E, et al. Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am J Physiol Gastrointest Liver Physiol. 2001;280(3):G368–80.

Article  CAS  PubMed  Google Scholar 

Tremaroli V, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jahansouz C, et al. Sleeve gastrectomy drives persistent shifts in the gut microbiome. Surg Obes Relat Dis. 2017;13(6):916–24.

Article  PubMed  Google Scholar 

Sokol H, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105(43):16731–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hegde S, et al. Microbiota dysbiosis and its pathophysiological significance in bowel obstruction. Sci Rep. 2018;8(1):13044.

Article  PubMed  PubMed Central  Google Scholar 

Nalluri-Butz H, et al. A pilot study demonstrating the impact of surgical bowel preparation on intestinal microbiota composition following colon and rectal surgery. Sci Rep. 2022;12(1):10559.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun X, et al. Bile is a promising gut nutrient that inhibits intestinal bacterial translocation and promotes gut motility via an interleukin-6-related pathway in an animal model of endotoxemia. Nutrition. 2021;84:111064.

Article  CAS  PubMed  Google Scholar 

Shin SY, et al. An altered composition of fecal microbiota, organic acids, and the effect of probiotics in the guinea pig model of postoperative ileus. Neurogastroenterol Motil. 2021;33(1):e13966.

Article  CAS  PubMed  Google Scholar 

Nyavor Y, et al. High-fat diet-induced alterations to gut microbiota and gut-derived lipoteichoic acid contributes to the development of enteric neuropathy. Neurogastroenterol Motil. 2020;32(7):e13838.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ge X, et al. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J Transl Med. 2017;15(1):13.

Article  PubMed  PubMed Central  Google Scholar 

Iwai H, et al. Effects of bacterial flora on cecal size and transit rate of intestinal contents in mice. Jpn J Exp Med. 1973;43(4):297–305.

CAS  PubMed  Google Scholar 

Lukovic E, Moitra VK, Freedberg DE. The microbiome: implications for perioperative and critical care. Curr Opin Anaesthesiol. 2019;32(3):412–20.

Article  PubMed  Google Scholar 

Banerjee S, et al. Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol. 2016;9(6):1418–28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heitmann PT, et al. The effects of loperamide on excitatory and inhibitory neuromuscular function in the human colon. Neurogastroenterol Motil. 2022;34(11):e14442.

Article  CAS  PubMed  Google Scholar 

Deng Y, et al. Manipulation of intestinal dysbiosis by a bacterial mixture ameliorates loperamide-induced constipation in rats. Benef Microbes. 2018;9(3):453–64.

Article  CAS  PubMed  Google Scholar 

Aziz Q, et al. Gut microbiota and gastrointestinal health: current concepts and future directions. Neurogastroenterol Motil. 2013;25(1):4–15.

Article  CAS  PubMed  Google Scholar 

Cong L, et al. Efficacy of high specific volume polysaccharide: a new type of dietary fiber—on molecular mechanism of intestinal water metabolism in rats with constipation. Med Sci Monit. 2019;25:5028–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9(5):286–94.

Article  CAS  PubMed  Google Scholar 

Rühl A. Glial cells in the gut. Neurogastroenterol Motil. 2005;17(6):777–90.

Article  PubMed  Google Scholar 

Brookes SJ. Classes of enteric nerve cells in the guinea-pig small intestine. Anat Rec. 2001;262(1):58–70.

Article  CAS  PubMed  Google Scholar 

Thuneberg L. Interstitial cells of Cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol. 1982;71:1–130.

Article  CAS  PubMed  Google Scholar 

Hetz S, et al. In vivo transplantation of neurosphere-like bodies derived from the human postnatal and adult enteric nervous system: a pilot study. PLoS ONE. 2014;9(4):e93605.

Article  PubMed  PubMed Central  Google Scholar 

Musser MA, Michelle Southard-Smith E. Balancing on the crest—evidence for disruption of the enteric ganglia via inappropriate lineage segregation and consequences for gastrointestinal function. Dev Biol. 2013;382(1):356–64.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif