Degradation of MYC by the mutant p53 reactivator drug, COTI-2 in breast cancer cells

Levine AJ (2021) Spontaneous and inherited TP53 genetic alterations. Oncogene 40(41):5975–5983

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kastenhuber ER, Lowe SW (2017) Putting p53 in context. Cell 170(6):1062–1078

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, Mc Henry KT, Pinchback RM, Ligon AH, Cho YJ, Haery L, Greulich H, Reich M, Winckler W, Lawrence MS, Weir BA, Tanaka KE, Chiang DY, Bass AJ, Loo A, Hoffman C, Prensner J, Liefeld T, Gao Q, Yecies D, Signoretti S, Maher E, Kaye FJ, Sasaki H, Tepper JE, Fletcher JA, Tabernero J, Baselga J, Tsao MS, Demichelis F, Rubin MA, Janne PA, Daly MJ, Nucera C, Levine RL, Ebert BL, Gabriel S, Rustgi AK, Antonescu CR, Ladanyi M, Letai A, Garraway LA, Loda M, Beer DG, True LD, Okamoto A, Pomeroy SL, Singer S, Golub TR, Lander ES, Getz G, Sellers WR, Meyerson M (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905

Article  CAS  PubMed  PubMed Central  Google Scholar 

Priestley P, Baber J, Lolkema MP, Steeghs N, de Bruijn E, Shale C, Duyvesteyn K, Haidari S, van Hoeck A, Onstenk W, Roepman P, Voda M, Bloemendal HJ, Tjan-Heijnen VCG, van Herpen CML, Labots M, Witteveen PO, Smit EF, Sleijfer S, Voest EE, Cuppen E (2019) Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575:210–216

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalkat M, De Melo J, Hickman KA, Lourenco C, Redel C, Resetca D, Tamachi A, Tu WB, Penn LZ (2017) MYC deregulation in primary human cancers.Genes (Basel). ;25;8(6).

Wang J, Merino DM, Light N, Murphy BL, Wang YD, Guo X, Hodges AP, Chau LQ, Liu KW, Dhall G, Asgharzadeh S, Kiehna EN, Shirey RJ, Janda KD, Taylor MD, Malkin D, Ellison DW, VandenBerg SR, Eberhart CG, Sears RC, Roussel MF, Gilbertson RJ, Wechsler-Reya RJ (2019) Myc and loss of p53 cooperate to drive formation of choroid plexus carcinoma. Cancer Res 79(9):2208–2219

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arena A, Montani MSG, Romeo MA, Benedetti R, Gaeta A, Cirone M (2022) DNA damage triggers an interplay between wtp53 and c-Myc affecting lymphoma cell proliferation and KSHV replication. Biochim Biophys Acta Mol Cell Res 1869(1):119168

Article  CAS  PubMed  Google Scholar 

Abraham SA, Hopcroft LE, Carrick E, Drotar ME, Dunn K, Williamson AJ, Korfi K, Baquero P, Park LE, Scott MT, Pellicano F, Pierce A, Copland M, Nourse C, Grimmond SM, Vetrie D, Whetton AD, Holyoake TL (2016) Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature 534(7607):341–346

Article  PubMed  PubMed Central  Google Scholar 

Santoro A, Vlachou T, Luzi L, Melloni G, Mazzarella L, D’Elia E, Aobuli X, Pasi CE, Reavie L, Bonetti P, Punzi S, Casoli L, Sabò A, Moroni MC, Dellino GI, Amati B, Nicassio F, Lanfrancone L, Pelicci PG (2019) p53 loss in breast cancer leads to MYC activation, increased cell plasticity, and expression of a mitotic signature with prognostic value. Cell Rep 26(3):624–638

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frazier MW, He X, Wang J, Gu Z, Cleveland JL, Zambetti GP (1998) Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete C-terminal domain. Mol Cell Biol 18(7):3735–3743

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liao P, Zeng SX, Zhou X, Chen T, Zhou F, Cao B, Jung JH, Del Sal G, Luo S, Lu H (2017) Mutant p53 gains its function via c-myc activation upon CDK4 phosphorylation at serine 249 and consequent PIN1 binding. Mol Cell 68(6):1134–1146e6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ganci F, Pulito C, Valsoni S, Sacconi A, Turco C, Vahabi M, Manciocco V, Mazza EMC, Meens J, Karamboulas C, Nichols AC, Covello R, Pellini R, Spriano G, Sanguineti G, Muti P, Bicciato S, Ailles L, Strano S, Fontemaggi G, Blandino G (2020) PI3K inhibitors curtail MYC-dependent mutant p53 gain-of-function in head and neck squamous cell carcinoma. Clin Cancer Res 26(12):2956–2971

Article  CAS  PubMed  Google Scholar 

Duffy MJ, Crown J (2021) Drugging “undruggable” genes for cancer treatment: are we making progress? Int J Cancer 148(1):8–17

Article  CAS  PubMed  Google Scholar 

Duffy MJ, Synnott NC, O’Grady S, Crown J (2022) Targeting p53 for the treatment of cancer. Semin Cancer Biol 79:58–67

Article  CAS  PubMed  Google Scholar 

Duffy MJ, Tang M, Rajaram S, O’Grady S, Crown J (2022) Targeting mutant p53 for cancer treatment: moving closer to clinical use? Cancers 14(18):4499. https://doi.org/10.3390/cancers14184499

Article  CAS  PubMed  PubMed Central  Google Scholar 

Whitfield JR, Soucek L (2021) The long journey to bring a myc inhibitor to the clinic. J Cell Biol 220(8):e202103090

Article  CAS  PubMed  PubMed Central  Google Scholar 

Llombart V, Mansour MR (2022) Therapeutic targeting of “undruggable” MYC. EBioMedicine 75:103756

Article  CAS  PubMed  Google Scholar 

Synnott NC, O’Connell D, Crown J, Duffy MJ (2020) COTI-2 reactivates mutant p53 and inhibits growth of triple-negative breast cancer cells. Breast Cancer Res Treat 179(1):47–56

Article  CAS  PubMed  Google Scholar 

Lindemann A, Patel AA, Silver NL, Tang L, Liu Z, Wang L, Tanaka N, Rao X, Takahashi H, Maduka NK, Zhao M, Chen TC, Liu W, Gao M, Wang J, Frank SJ, Hittelman WN, Mills GB, Myers JN, Osman AA (2019) COTI-2, a novel thiosemicarbazone derivative, exhibits antitumor activity in HNCC through p53-dependent and -independent mechanisms. Clin Cancer Res 25(18):5650–5662

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salim KY, Maleki Vareki S, Danter WR, Koropatnick J (2016) COTI-2, a novel small molecule that is active against multiple human cancer cell lines in vitro and in vivo. Oncotarget 7(27):41363–41379

Article  PubMed  PubMed Central  Google Scholar 

Pósa V, Stefanelli A, Nunes JHB, Hager S, Mathuber M, May NV, Berger W, Keppler BK, Kowol CR, Enyedy ÉA, Heffeter P (2022) Thiosemicarbazone derivatives developed to overcome COTI-2 resistance. Cancers (Basel) 14(18):4455

Article  PubMed  Google Scholar 

Derakhshan F, Reis-Filho JS (2022) Pathogenesis of triple-negative breast cancer. Annu Rev Pathol 17:181–204

Article  PubMed  PubMed Central  Google Scholar 

AlSultan D, Kavanagh E, O’Grady S, Eustace AJ, Castell A, Larsson LG et al (2021) The novel low molecular weight MYC antagonist MYCMI-6 inhibits proliferation and induces apoptosis in breast cancer cells. Invest New Drugs 39(2):587–594

Article  CAS  PubMed  Google Scholar 

Tang M, O’Grady S, Crown J, Duffy MJ (2022) MYC as a therapeutic target for the treatment of triple-negative breast cancer: preclinical investigations with the novel MYC inhibitor, MYCi975. Breast Cancer Res Treat 195(2):105–115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang M, Meng J, Wang J New engineered-botulinum toxins inhibit the release of pain-related mediators. Int J Mol Sci 2019, 21,262

Chou T (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446

Article  CAS  PubMed  Google Scholar 

Farrell AS, Sears RC (2014) MYC degradation. Cold Spring Harb Perspect Med 4(3):a014365

Article  PubMed  PubMed Central  Google Scholar 

Sun XX, Li Y, Sears RC, Dai MS (2021) Targeting the MYC ubiquitination-proteasome degradation pathway for cancer therapy. Front Oncol 11:679445

Article  PubMed  PubMed Central  Google Scholar 

Zhou Z, He C, Wang J (2015) Regulation mechanism of Fbxw7-related signaling pathways (review). Oncol Rep 34(5):2215–2224

Article  CAS  PubMed  Google Scholar 

Han H, Jain AD, Truica MI, Izquierdo-Ferrer J, Anker JF, Lysy B, Sagar V, Luan Y, Chalmers ZR, Unno K, Mok H, Vatapalli R, Yoo YA, Rodriguez Y, Kandela I, Parker JB, Chakravarti D, Mishra RK, Schiltz GE, Abdulkadir SA (2019) Small-molecule MYC inhibitors suppress tumor growth and enhance immunotherapy. Cancer Cell 36(5):483–497e15

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duffy MJ, O’Grady S, Tang M, Crown J (2021) MYC as a target for cancer treatment. Cancer Treat Rev 94:102154

Article  CAS  PubMed  Google Scholar 

Massó-Vallés D, Soucek L (2020) Blocking myc to treat cancer: reflecting on two decades of Omomyc. Cells 9(4):883

Article  PubMed  PubMed Central  Google Scholar 

Garralda1 E, Moreno V, Alonso G, Corral E, Hernandez G (2022) Dose escalation study of OMO-103, a first in class Pan-MYC-Inhibitor in patients (pts) with advanced solid tumors. Eur J Cancer 174S1:S5 abstract No 7

Article  Google Scholar 

Demma MJ, Mapelli C, Sun A, Bodea S, Ruprecht B, Javaid S, Wiswell D, Muise E, Chen S, Zelina J, Orvieto F, Santoprete A, Altezza S, Tucci F, Escandon E, Hall B, Ray K, Walji A, O’Neil J (2019) Omomyc reveals new mechanisms to inhibit the MYC oncogene. Mol Cell Biol 39(22):e00248–e319

Article  CAS  PubMed 

留言 (0)

沒有登入
gif