Impact of storage conditions and time on DNA yield from ammunition cartridges

Truman J, Langton L, Planty M, BJS Statisticians (2013) The U.S. Department of Justice, Office of Justice Programs, Bureau of Justice Statistics. Criminal Victimization, 2012. NCJ 243389

Kena G, Truman JL, BJS Statisticians (2022) The U.S. Department of Justice, Office of Justice Programs, Bureau of Justice Statistics Special Report: Trends and patterns in firearm violence, 1993-2018. NCJ 251663

U.S. Department of Justice, Federal Bureau of Investigation, Criminal Justice Information Services Division (2022) The transition to the National Incident-Based Reporting System (NIBRS): A Comparison of 2020 and 2021 NIBRS Estimates. https://kfor.com/wpcontent/uploads/sites/3/2022/10/NIBRS-Trend-Analysis-Report.pdf

Holland MM, Bonds RM, Holland CA, McElhoe JA (2019) Recovery of mtDNA from unfired metallic ammunition components with an assessment of sequence profile quality and DNA damage through MPS analysis. Forensic Sci Int Genet 39:. https://doi.org/10.1016/j.fsigen.2018.12.008

Montpetit S (2020) Obtaining DNA from ammunition: a review. WIREs Forensic Sci 2:. https://doi.org/10.1002/wfs2.1352

Tozzo P, Mazzobel E, Marcante B et al (2022) Touch DNA sampling methods: efficacy evaluation and systematic review. Int J Mol Sci 23:15541. https://doi.org/10.3390/ijms232415541

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moore D, Beaumont D, Brown M et al (2021) An investigation of two methods of DNA recovery from fired and unfired 9 mm ammunition. Sci Justice 61:160–169. https://doi.org/10.1016/j.scijus.2020.11.002

Article  PubMed  Google Scholar 

Jansson L, Forsberg C, Akel Y et al (2020) Factors affecting DNA recovery from cartridge cases. Forensic Sci Int Genet 48:102343. https://doi.org/10.1016/j.fsigen.2020.102343

Article  CAS  PubMed  Google Scholar 

Prasad E, Atwood L, van Oorschot RAH, et al (2021) Trace DNA recovery rates from firearms and ammunition as revealed by casework data. Aust J Forensic Sci 1–16. https://doi.org/10.1080/00450618.2021.1939783

Elwick K, Gauthier Q, Rink S et al (2022) Recovery of DNA from fired and unfired cartridge casings: comparison of two DNA collection methods. Forensic Sci Int Genet 59:102726. https://doi.org/10.1016/j.fsigen.2022.102726

Article  CAS  PubMed  Google Scholar 

Prasad E, Hitchcock C, Raymond J, et al (2020) DNA recovery from unfired and fired cartridge cases: a comparison of swabbing, tape lifting, vacuum filtration, and direct PCR. Forensic Sci Int 317. https://doi.org/10.1016/j.forsciint.2020.110507

Thanakiatkrai P, Rerkamnuaychoke B (2017) Direct STR typing from bullet casings. Forensic Sci Int Genet Suppl Ser 6:e164–e166. https://doi.org/10.1016/j.fsigss.2017.09.058

Article  Google Scholar 

Thanakiatkrai P, Rerkamnuaychoke B (2019) Direct STR typing from fired and unfired bullet casings. Forensic Sci Int 301. https://doi.org/10.1016/j.forsciint.2019.05.037

Jansson L, Swensson M, Gifvars E et al (2022) Individual shedder status and the origin of touch DNA. Forensic Sci Int Genet 56:102626. https://doi.org/10.1016/j.fsigen.2021.102626

Article  CAS  PubMed  Google Scholar 

Montpetit S, O’Donnell P (2015) An optimized procedure for obtaining DNA from fired and unfired ammunition. Forensic Sci Int Genet 17. https://doi.org/10.1016/j.fsigen.2015.03.012

Schiffner LA, Bajda EJ, Prinz M et al (2005) Optimization of a simple, automatable extraction method to recover sufficient DNA from low copy number DNA samples for generation of short tandem repeat profiles. Croat Med J 46:578–586

PubMed  Google Scholar 

Bille TW, Fahrig G, Weitz SM, Peiffer GA (2020) An improved process for the collection and DNA analysis of fired cartridge cases. Forensic Sci Int Genet 46:102238. https://doi.org/10.1016/j.fsigen.2020.102238

Article  CAS  PubMed  Google Scholar 

Gallimore JM, McElhoe JA, Holland MM (2018) Assessing heteroplasmic variant drift in the mtDNA control region of human hairs using an MPS approach. Forensic Sci Int Genet 32. https://doi.org/10.1016/j.fsigen.2017.09.013

R Cpre Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

R Team (2022) RStudio: Integrated Development for R. Boston, MA: RStudio, Inc. http://www.rstudio.com/

Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611. https://doi.org/10.1093/biomet/52.3-4.591

Article  Google Scholar 

Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621. https://doi.org/10.1080/01621459.1952.10483441

Article  Google Scholar 

Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56:52. https://doi.org/10.2307/2282330

Article  Google Scholar 

Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag New York

Bion R (2022) ggradar: create radar charts using ggplot2.

Kassambara A (2020) _ggpubr: 'ggplot2' Based Publication Ready Plots. https://rpkgs.datanovia.com/ggpubr/

Pedersen T (2022) ggforce: Accelerating 'ggplot2'. https://CRAN.R-project.org/package=ggforce

Ogle DH, Doll JC, Wheeler P, Dinno A (2022) FSA: fisheries stock analysis. https://github.com/fishRCore-Team/FSA

Tang J, Ostrander J, Wickenheiser R, Hall A (2020) Touch DNA in forensic science: the use of laboratory-created eccrine fingerprints to quantify DNA loss. Forensic Sci Int Synerg 2:1–16. https://doi.org/10.1016/j.fsisyn.2019.10.004

Article  PubMed  Google Scholar 

Daly DJ, Murphy C, McDermott SD (2012) The transfer of touch DNA from hands to glass, fabric and wood. Forensic Sci Int Genet 6:41–46. https://doi.org/10.1016/j.fsigen.2010.12.016

Article  CAS  PubMed  Google Scholar 

Goray M, Mitchell RJ, van Oorschot RAH (2010) Investigation of secondary DNA transfer of skin cells under controlled test conditions. Leg Med 12:117–120. https://doi.org/10.1016/j.legalmed.2010.01.003

Article  CAS  Google Scholar 

Buckingham AK, Harvey ML, van Oorschot RAH (2016) The origin of unknown source DNA from touched objects. Forensic Sci Int Genet 25:26–33. https://doi.org/10.1016/j.fsigen.2016.07.015

Article  CAS  PubMed  Google Scholar 

Bille T, Grimes M, Podini D (2013) Induced damage on unfired brass cartridge casings. In: 24th Annual International Symposium on Human Identification. 24th Annual International Symposium on Human Identification

留言 (0)

沒有登入
gif