Identification of an <i>LDLR</i> variant in a Chinese familial hypercholesterolemia and its relation to ROS/NLRP3-Mediated pyroptosis in hepatic cells

[1] Amersfoort J, Schaftenaar FH, Douna H, et al. Diet-induced dyslipidemia induces metabolic and migratory adaptations in regulatory T cells. Cardiovasc Res 2021; 117: 1309−1324. doi: 10.1093/cvr/cvaa208 [2] Foody JM, Vishwanath R. Familial hypercholesterolemia/autosomal dominant hypercholesterolemia: Molecular defects, the LDL-C continuum, and gradients of phenotypic severity. J Clin Lipidol 2016; 10: 970−986. doi: 10.1016/j.jacl.2016.04.009 [3] Abifadel M, Varret M, Rabès JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Gene 2003; 34: 154−156. doi: 10.1038/ng1161 [4] Alnouri F, Athar M, Al-Allaf FA, et al. Novel combined variants of LDLR and LDLRAP1 genes causing severe familial hypercholesterolemia. Atherosclerosis 2018; 277: 425−433. doi: 10.1016/j.atherosclerosis.2018.06.878 [5] Pirillo A, Garlaschelli K, Arca M, et al. Spectrum of mutations in Italian patients with familial hypercholesterolemia: New results from the LIPIGEN study. Atheroscler Suppl 2017; 29: 17−24. doi: 10.1016/j.atherosclerosissup.2017.07.002 [6] Danyel M, Ott CE, Grenkowitz T, et al. Evaluation of the role of STAP1 in Familial Hypercholesterolemia. Sci Rep 2019; 9: 11995. doi: 10.1038/s41598-019-48402-y [7] Cao YX, Wu NQ, Sun D, et al. Application of expanded genetic analysis in the diagnosis of familial hypercholesterolemia in patients with very early-onset coronary artery disease. J Transl Med 2018; 16: 345. doi: 10.1186/s12967-018-1737-7 [8] de Paiva Silvino JP, Jannes CE, Tada MT, et al. Cascade screening and genetic diagnosis of familial hypercholesterolemia in clusters of the Southeastern region from Brazil. Mol Biol Rep 2020; 47: 9279−9288. doi: 10.1007/s11033-020-06014-0 [9]

Bandyopadhyay D, Ashish K, Hajra A, et al. Cardiovascular Outcomes of PCSK9 Inhibitors: With Special Emphasis on Its Effect beyond LDL-Cholesterol Lowering. J Lipids 2018; 2018: 3179201.

[10] Flannick J, Mercader JM, Fuchsberger C, et al. Exome sequencing of 20, 791 cases of type 2 diabetes and 24, 440 controls. Nature 2019; 570: 71−76. doi: 10.1038/s41586-019-1231-2 [11] Jelin AC, Vora N. Whole Exome Sequencing: Applications in Prenatal Genetics. Obstet Gynecol Clin North Am 2018; 45: 69−81. doi: 10.1016/j.ogc.2017.10.003 [12] Hansen MC, Haferlach T, Nyvold CG. A decade with whole exome sequencing in haematology. Br J Haematol 2020; 188: 367−382. doi: 10.1111/bjh.16249 [13] Xiang R, Fan LL, Lin MJ, et al. The genetic spectrum of familial hypercholesterolemia in the central south region of China. Atherosclerosis 2017; 258: 84−88. doi: 10.1016/j.atherosclerosis.2017.02.007 [14] van den Boomen DJH, Sienkiewicz A, Berlin I, et al. A trimeric Rab7 GEF controls NPC1-dependent lysosomal cholesterol export. Nat Commun 2020; 11: 5559−5559. doi: 10.1038/s41467-020-19032-0 [15] Ochiai A, Miyata S, Shimizu M, et al. Piperine induces hepatic low-density lipoprotein receptor expression through proteolytic activation of sterol regulatory element-binding proteins. PloS one 2015; 10: e0139799. doi: 10.1371/journal.pone.0139799 [16] Bjune K, Wierød L, Naderi S. Inhibitors of AKT kinase increase LDL receptor mRNA expression by two different mechanisms. PloS one 2019; 14: e0218537−e0218537. doi: 10.1371/journal.pone.0218537 [17] Ho CM, Ho SL, Jeng YM, et al. Accumulation of free cholesterol and oxidized low-density lipoprotein is associated with portal inflammation and fibrosis in nonalcoholic fatty liver disease. J Inflamm (Lond) 2019; 16: 7. doi: 10.1186/s12950-019-0211-5 [18] Burillo-Sanz S, Montes-Cano MA, García-Lozano JR, et al. Mutational profile of rare variants in inflammasome-related genes in Behçet disease: A Next Generation Sequencing approach. Sci Rep 2017; 7: 8453−8453. doi: 10.1038/s41598-017-09164-7 [19] Qiu T, Pei P, Yao X, et al. Taurine attenuates arsenic-induced pyroptosis and nonalcoholic steatohepatitis by inhibiting the autophagic-inflammasomal pathway. Cell Death Dis 2018; 9: 946−946. doi: 10.1038/s41419-018-1004-0 [20] Risk of fatal coronary heart disease in familial hypercholesterolaemia. Scientific Steering Committee on behalf of the Simon Broome Register Group. BMJ (Clinical research ed) 1991; 303: 893−896. doi: 10.1136/bmj.303.6807.893 [21] Iacovazzo D, Flanagan SE, Walker E, et al. MAFA missense mutation causes familial insulinomatosis and diabetes mellitus. Proc Natl Acad Sci U S A 2018; 115: 1027−1032. doi: 10.1073/pnas.1712262115 [22]

Pace NP, Craus J, Felice A, Vassallo J. Case Report: Identification of an HNF1B p. Arg527Gln mutation in a Maltese patient with atypical early onset diabetes and diabetic nephropathy. BMC Endocr Disord 2018; 18: 28.

[23] Sunyaev S, Ramensky V, Bork P. Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends Genet 2000; 16: 198−200. doi: 10.1016/S0168-9525(00)01988-0 [24] [25] Sun LY, Zhang YB, Jiang L, et al. Identification of the gene defect responsible for severe hypercholesterolaemia using whole-exome sequencing. Sci Rep 2015; 5: 11380. doi: 10.1038/srep11380 [26] Brunham LR, Ruel I, Aljenedil S, et al. Canadian cardiovascular society position statement on familial hypercholesterolemia: update 2018. Can J Cardiol 2018; 34: 1553−1563. doi: 10.1016/j.cjca.2018.09.005 [27] Cayo MA, Mallanna SK, Di Furio F, et al. A drug screen using human ipsc-derived hepatocyte-like cells reveals cardiac glycosides as a potential treatment for hypercholesterolemia. Cell Stem Cell 2017; 20: 478−489.e475. doi: 10.1016/j.stem.2017.01.011 [28] van de Sluis B, Wijers M, Herz J. News on the molecular regulation and function of hepatic low-density lipoprotein receptor and LDLR-related protein 1. Curr Opin Lipidol 2017; 28: 241−247. doi: 10.1097/MOL.0000000000000411 [29] Cheng X, Ding J, Zheng F, et al. Two mutations in LDLR gene were found in two Chinese families with familial hypercholesterolemia. Mol Biol Rep 2009; 36: 2053−2057. doi: 10.1007/s11033-008-9416-z [30] Oommen D, Kizhakkedath P, Jawabri AA, et al. Proteostasis regulation in the endoplasmic reticulum: an emerging theme in the molecular pathology and therapeutic management of familial hypercholesterolemia. Front Genet 2020; 11: 570355. doi: 10.3389/fgene.2020.570355 [31]

Sun XM, Patel DD, Webb JC, et al. Familial hypercholesterolemia in China. Identification of mutations in the LDL-receptor gene that result in a receptor-negative phenotype. Arterioscler Thromb 1994; 14: 85−94.

[32] Jiang L, Sun LY, Dai YF, et al. The distribution and characteristics of LDL receptor mutations in China: A systematic review. Sci Rep 2015; 5: 17272. doi: 10.1038/srep17272

留言 (0)

沒有登入
gif