Polydopamine-Based Colorimetric Superwettable Biosensor for Highly Sensitive Detection of Hydrogen Peroxide and Glucose

Giorgio M, Trinei M, Migliaccio E, Pelicci PG. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Bio. 2007;8:722–8.

Article  CAS  Google Scholar 

Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol Cell. 2007;26(1):1–14.

Article  CAS  PubMed  Google Scholar 

López-Lázaro M. Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett. 2007;252(1):1–8.

Article  PubMed  Google Scholar 

Chen W, Cai S, Ren Q-Q, Wen W, Zhao YD. Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst. 2012;137:49–58.

Article  CAS  PubMed  Google Scholar 

Azad T, Ahmed S. Common milk adulteration and their detection techniques. Int J Food Contam. 2016;3(1):22.

Article  Google Scholar 

Bopitiya D, Guo S, Hearn MTW, Zhang J, Bennett LE. Formulations of selected energy beverages promote pro-oxidant effects of ascorbic acid and long-term stability of hydrogen peroxide. Food Chem. 2022;388: 133037.

Article  CAS  PubMed  Google Scholar 

Ivanova AS, Merkuleva AD, Andreev SV, Sakharov KA. Method for determination of hydrogen peroxide in adulterated milk using high performance liquid chromatography. Food Chem. 2019;283:431–6.

Article  CAS  PubMed  Google Scholar 

Wang Y, Zhou X, Dong W, Zhong Q, Mo X, Li H. Light responsive Fe-Tcpp@ICG for hydrogen peroxide detection and inhibition of tumor cell growth. Biosens Bioelectron. 2022;200: 113931.

Article  CAS  PubMed  Google Scholar 

Zhang X, Li L, Peng X, Chen R, Huo K, Chu PK. Non-enzymatic hydrogen peroxide photoelectrochemical sensor based on WO3 decorated core–shell TiC/C nanofibers electrode. Electrochim Acta. 2013;108:491–6.

Article  CAS  Google Scholar 

Yue Z, Zhang W, Wang C, Liu G, Niu W. CdS-EePt dimers based photoelectrochemical sensor for detection of H2O2. Mater Lett. 2012;74:180–2.

Article  CAS  Google Scholar 

Rodriguez-Gutierrez R, Ospina NS, Mccoy RG, Lipska KJ, Shah ND, Montori VM. Inclusion of hypoglycemia in clinical practice guidelines and performance measures in the care of patients with diabetes. Jama Intern Med. 2016;176(11):1714–6.

Article  PubMed  PubMed Central  Google Scholar 

Seaquist ER, Chow LS. Hypoglycemia in diabetes. JAMA. 2017;318(1):31–2.

Article  PubMed  Google Scholar 

Nathan DM. Diagnosing diabetes mellitus - best practices still unclear. Nat Rev Endocrinol. 2018;14(10):572–3.

Article  PubMed  Google Scholar 

Bergenstal RM. Continuous glucose monitoring: Transforming diabetes management step by step. Lancet. 2018;391(10128):1334–6.

Article  PubMed  Google Scholar 

Wang L, Shi XH, Zhang YF, Liu AA, Liu SL, Wang ZG, Pang DW. CdZnSes quantum dots condensed with ordered mesoporous carbon for high-sensitive electrochemiluminescence detection of hydrogen peroxide in live cells. Electrochim Acta. 2020;362: 137107.

Article  CAS  Google Scholar 

Karimi A, Husain SW, Hosseini M, Azar PA, Ganjali MR. Rapid and sensitive detection of hydrogen peroxide in milk by enzyme-free electrochemiluminescence sensor based on a polypyrrole-cerium oxide nanocomposite. Sens Actuators B Chem. 2018;271:90–6.

Article  CAS  Google Scholar 

Li Y, Wang Y, Fu C, Wu Y, Cao H, Shi W, Jung YM. A simple enzyme-free SERS sensor for the rapid and sensitive detection of hydrogen peroxide in food. Analyst. 2020;145(2):607–12.

Article  CAS  PubMed  Google Scholar 

Zhang R, Zhong Q, Liu Y, Ji J, Liu B. Monodispersed silver-gold nanorods controllable etching for ultrasensitive SERS detection of hydrogen peroxide-involved metabolites. Talanta. 2022;243: 123382.

Article  CAS  PubMed  Google Scholar 

Zheng DJ, Yang YS, Zhu HL. Recent progress in the development of small-molecule fluorescent probes for the detection of hydrogen peroxide. Trend Anal Chem. 2019;118:625–51.

Article  CAS  Google Scholar 

Żamojć K, Zdrowowicz M, Jacewicz D, Wyrzykowski D, Chmurzyński L. Fluorescent probes used for detection of hydrogen peroxide under biological conditions. Crit Rev Anal Chem. 2016;46(3):171–200.

Article  PubMed  Google Scholar 

Zambrano G, Nastri F, Pavone V, Lombardi A, Chino M. Use of an artificial miniaturized enzyme in hydrogen peroxide detection by chemiluminescence. Sensors. 2020;20(13):3793.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu C, Song G, Lin JM. Reactive oxygen species and their chemiluminescence-detection methods. TrAC Trends Anal Chem. 2006;25(10):985–95.

Article  CAS  Google Scholar 

Wang D, Dang X, Tan B, Zhang Q, Zhao H. 3D V2O5-MoS2/rGO nanocomposites with enhanced peroxidase mimicking activity for sensitive colorimetric determination of H2O2 and glucose. Spectrochim Acta A Mol Biomol Spectrosc. 2022;269: 120750.

Article  CAS  PubMed  Google Scholar 

Liu A, Li M, Wang J, Feng F, Zhang Y, Qiu Z, Chen Y, Meteku BE, Wen C, Yan Z, Zeng J. Ag@Au core/shell triangular nanoplates with dual enzyme-like properties for the colorimetric sensing of glucose. Chin Chem Lett. 2020;31(5):1133–6.

Article  CAS  Google Scholar 

Luo J, Liu R, Zhao S, Gao Y. Bimetallic Fe-Co nanoalloy confined in porous carbon skeleton with enhanced peroxidase mimetic activity for multiple biomarkers monitoring. J Anal Test. 2023;7:53–68.

Article  Google Scholar 

Sima F, Xu J, Wu D, Sugioka K. Ultrafast laser fabrication of functional biochips: new avenues for exploring 3D micro- and nano-environments. Micromachines. 2017;8(2):40.

Article  PubMed Central  Google Scholar 

Kemmler M, Sauer U, Schleicher E, Preininger C, Brandenburg A. Biochip point-of-care device for sepsis diagnostics. Sens Actuators B Chem. 2014;192:205–15.

Article  CAS  Google Scholar 

Sah V, Baier R. Bacteria inside semiconductors as potential sensor elements: biochip progress. Sensors. 2014;14(6):11225–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee J-H, Jung H-I. Biochip technology for monitoring posttraumatic stress disorder (PTSD). BioChip J. 2013;7(3):195–200.

Article  CAS  Google Scholar 

Chen X, Zhang L. Review in manufacturing methods of nanochannels of bio-nanofluidic chips. Sens Actuators B Chem. 2018;254:648–59.

Article  CAS  Google Scholar 

Bai H, Wang L, Ju J, Sun R, Zheng Y, Jiang L. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns. Adv Mater. 2014;26(29):5025–30.

Article  CAS  PubMed  Google Scholar 

Hou Y, Yu M, Chen X, Wang Z, Yao S. Recurrent filmwise and dropwise condensation on a beetle mimetic surface. ACS Nano. 2014;9(1):71–81.

Article  PubMed  Google Scholar 

Tsougeni K, Petrou PS, Papageorgiou DP, Kakabakos SE, Tserepi A, Gogolides E. Controlled protein adsorption on microfluidic channels with engineered roughness and wettability. Sens Actuators B Chem. 2012;161(1):216–22.

Article  CAS  Google Scholar 

Songok J, Tuominen M, Teisala H, Haapanen J, Mäkelä J, Kuusipalo J, Toivakka M. Paper-based microfluidics: Fabrication technique and dynamics of capillary-driven surface flow. ACS Appl Mater Interfaces. 2014;6(22):20060–6.

Article  CAS  PubMed  Google Scholar 

Shi W, Xu T, Xu LP, Chen Y, Wen Y, Zhang X, Wang S. Cell micropatterns based on silicone-oil-modified slippery surfaces. Nanoscale. 2016;8(44):18612–5.

Article  CAS  PubMed  Google Scholar 

Xu T, Shi W, Huang J, Song Y, Zhang F, Xu LP, Zhang X, Wang S. Superwettable microchips as a platform toward microgravity biosensing. ACS Nano. 2017;11(1):621–6.

Article  CAS  PubMed  Google Scholar 

Zheng Y, Bai H, Huang Z, Tian X, Nie FQ, Zhao Y, Zhai J, Jiang L. Directional water collection on wetted spider silk. Nature. 2010;463(7281):640–3.

Article  CAS  PubMed  Google Scholar 

Ueda E, Levkin PA. Emerging applications of superhydrophilic superhydrophobic micropatterns. Adv Mater. 2013;25(9):1234–47.

Article  CAS  PubMed  Google Scholar 

Wang Y, Liu F, Yang Y, Xu LP. Droplet evaporation-induced analyte concentration toward sensitive biosensing. Mater Chem Front. 2021;5:5639–52.

Article  CAS  Google Scholar 

Xu T, Xu LP, Zhang X, Wang S. Bioinspired superwettable micropatterns for biosensing. Chem Soc Rev. 2019;48(12):3153–65.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif