Non-Invasive Imaging Modalities for Stem Cells Tracking in Osteoarthritis

Hunter DJ, March L, Chew M. Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet. 2020;396(10264):1711–2.

Article  Google Scholar 

Holden MA, Nicolson PJ, Thomas MJ, Corp N, Hinman RS, Bennell KL. Osteoarthritis year in review 2022: rehabilitation. Osteoarthr. Cartil. 2023;31(2):177–86.

Giorgino R, Albano D, Fusco S, Peretti GM, Mangiavini L, Messina C. Knee osteoarthritis: epidemiology, pathogenesis, and mesenchymal stem cells: what else is new? An update. Int. J. Mol. Sci. 2023;24(7):6405.

Article  CAS  Google Scholar 

Migliorini F, Tingart M, Maffulli N. Progress with stem cell therapies for tendon tissue regeneration. Expert Opin. Biol. Ther. 2020;20(11):1373–9.

Article  Google Scholar 

Hashemibeni B, Pourentezari M, Valiani A, Dortaj H, Hassanpour A, Sharifian Z, et al. Impact of fibrin on the chondrogenic avocado soybean unsaponifiables on poly (Lactic-co-Glycolic) acid scaffold. Biointerface Res. Appl. Chem. 2021;11(4):11525–34.

CAS  Google Scholar 

Wang W, Chu Y, Zhang P, Liang Z, Fan Z, Guo X, et al. Targeting macrophage polarization as a promising therapeutic strategy for the treatment of osteoarthritis. Int. Immunopharmacol. 2023;116:109790.

Article  CAS  Google Scholar 

Berenbaum F, Walker C. Osteoarthritis and inflammation: a serious disease with overlapping phenotypic patterns. Postgrad. Med. 2020;132(4):377–84.

Article  CAS  Google Scholar 

Bassi G, Grimaudo MA, Panseri S, Montesi M. Advanced multi-dimensional cellular models as emerging reality to reproduce in vitro the human body complexity. Int. J. Mol. Sci. 2021;22(3):1195.

Article  CAS  Google Scholar 

Pourentezari M, Anvari M, Yadegari M, Abbasi A, Dortaj H. A review of tissue-engineered cartilage utilizing fibrin and its composite. International Journal of Medical. Laboratory. 2021;8(1):1–9.

Abd-Elsayed A. Stem cells for the treatment of knee osteoarthritis: a comprehensive review. Pain physician. 2018;21:229–41.

Article  Google Scholar 

Teixeira SP, Domingues RM, Shevchuk M, Gomes ME, Peppas NA, Reis RL. Biomaterials for sequestration of growth factors and modulation of cell behavior. Adv. Funct. Mater. 2020;30(44):1909011.

Article  CAS  Google Scholar 

Scarfe L, Brillant N, Kumar JD, Ali N, Alrumayh A, Amali M, et al. Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies. NPJ Regen. Med. 2017;2(1):1–13.

Zhao W. Progress of stem cell research in knee osteoarthritis. Highlights Sci. Eng. Technol. 2023;36:1421–6.

Article  Google Scholar 

Ma X, Luan Z, Li J. Inorganic nanoparticles-based systems in biomedical applications of stem cells: opportunities and challenges. Int. J. Nanomedicine. 2023;18:143–82. https://doi.org/10.2147/IJN.S384343.

Marenah M, Li J, Kumar A, Murrell W. Quality assurance and adverse event management in regenerative medicine for knee osteoarthritis: current concepts. J. clin. orthop. trauma. 2019;10(1):53–8.

Article  Google Scholar 

Zavatti M, Beretti F, Casciaro F, Bertucci E, Maraldi T. Comparison of the therapeutic effect of amniotic fluid stem cells and their exosomes on monoiodoacetate-induced animal model of osteoarthritis. Biofactors. 2020;46(1):106–17.

Article  CAS  Google Scholar 

Lim NH, Wen C, Vincent TL. Molecular and structural imaging in surgically induced murine osteoarthritis. Osteoarthr. Cartil. 2020;28(7):874–884.

Yi W, Zhou H, Li A, Yuan Y, Guo Y, Li P, et al. A NIR-II fluorescent probe for articular cartilage degeneration imaging and osteoarthritis detection. Biomater. Sci. 2019;7(3):1043–51.

Article  CAS  Google Scholar 

Oliveira JM, Carvalho L, Silva-Correia J, Vieira S, Majchrzak M, Lukomska B, et al. Hydrogel-based scaffolds to support intrathecal stem cell transplantation as a gateway to the spinal cord: clinical needs, biomaterials, and imaging technologies. NPJ Regen. Med. 2018;3(1):1–9.

Article  Google Scholar 

Sulastri D, Arnadi A, Afriwardi A, Desmawati D, Amir A, Irawati N, et al. Risk factor of elevated matrix metalloproteinase-3 gene expression in synovial fluid in knee osteoarthritis women. PloS one. 2023;18(3):e0283831.

Article  CAS  Google Scholar 

Salman LA, Ahmed G, Dakin SG, Kendrick B, Price A. Osteoarthritis: a narrative review of molecular approaches to disease management. Arthritis Res. Ther. 2023;25(1):1–9.

Article  Google Scholar 

Kumar AH. Discovery and development of stem cells for therapeutic applications. Drug Discovery and development: from targets and molecules to medicines. Singapore: Springer; 2021. p. 267–96.

Google Scholar 

Jacob G, Shimomura K, Nakamura N. Osteochondral injury, management and tissue engineering approaches. Front. Cell Dev. Biol. 2020:8.

Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M, Toietta G. Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int. J. Mol. Sci. 2017;18(10):2087.

Article  Google Scholar 

Bertoni L, Branly T, Jacquet S, Desancé M, Desquilbet L, Rivory P, et al. Intra-articular injection of 2 different dosages of autologous and allogeneic bone marrow-and umbilical cord-derived mesenchymal stem cells triggers a variable inflammatory response of the fetlock joint on 12 sound experimental horses. Stem Cells Int. 2019;2019:9431894.

Whitehouse MR, Howells NR, Parry MC, Austin E, Kafienah W, Brady K, et al. Repair of torn avascular meniscal cartilage using undifferentiated autologous mesenchymal stem cells: from in vitro optimization to a first-in-human study. Stem Cells Transl. Med. 2017;6(4):1237–48.

Article  CAS  Google Scholar 

Huang X, Wang Z, Wang H, Chen D, Tong L. Novel strategies for the treatment of osteoarthritis based on biomaterials and critical molecular signaling. J. Mater. Sci. Technol. 2023;149(20):42–55.

Shang F, Yu Y, Liu S, Ming L, Zhang Y, Zhou Z, et al. Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioactive mater. 2021;6(3):666–83.

Article  CAS  Google Scholar 

Jo CH, Chai JW, Jeong EC, Oh S, Shin JS, Shim H, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a 2-year follow-up study. Am. J. Sports Med. 2017;45(12):2774–83.

Article  Google Scholar 

Branly T, Contentin R, Desancé M, Jacquel T, Bertoni L, Jacquet S, et al. Improvement of the chondrocyte-specific phenotype upon equine bone marrow mesenchymal stem cell differentiation: influence of culture time, transforming growth factors and type I collagen siRNAs on the differentiation index. Int. J. Mol. Sci. 2018;19(2):435.

Article  Google Scholar 

Huang K, Li Q, Li Y, Yao Z, Luo D, Rao P, et al. Cartilage tissue regeneration: the roles of cells, stimulating factors and scaffolds. Curr. Stem Cell Res. Ther. 2018;13(7):547–67.

Article  CAS  Google Scholar 

Yang M, Wen T, Chen H, Deng J, Yang C, Zhang Z. Knockdown of insulin-like growth factor 1 exerts a protective effect on hypoxic injury of aged BM-MSCs: role of autophagy. Stem Cell Res. Ther. 2018;9(1):1–17.

Article  Google Scholar 

Mazini L, Rochette L, Amine M, Malka G. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int. J. Mol. Sci. 2019;20(10):2523.

Article  CAS  Google Scholar 

Sun Y, Chen S, Pei M. Comparative advantages of infrapatellar fat pad: an emerging stem cell source for regenerative medicine. Rheumatology. 2018;57(12):2072–86.

Article  CAS  Google Scholar 

Kim HJ, Park J-S. Usage of human mesenchymal stem cells in cell-based therapy: advantages and disadvantages. Dev. Reprod. 2017;21(1):1.

Article  Google Scholar 

Rossant J, Tam PP. Opportunities and challenges with stem cell-based embryo models. Stem Cell Reports. 2021.

Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B, et al. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res. Ther. 2017;8(1):1–13.

Article  Google Scholar 

Jiang Y, Tuan RS. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat. Rev. Rheumatol. 2015;11(4):206.

Article  Google Scholar 

Panadero J, Lanceros-Mendez S, Ribelles JG. Differentiation of mesenchymal stem cells for cartilage tissue engineering: individual and synergetic effects of three-dimensional environment and mechanical loading. Acta Biomater. 2016;33:1–12.

Article  CAS  Google Scholar 

Omole AE, Fakoya AOJ. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ. 2018;6:e4370.

Article  Google Scholar 

Varli HS, Alkan F, Demirbilek M, Türkoğlu N. A virus-free vector for the transfection of somatic cells to obtain IPSC. J. Nanopart. Res. 2019;21(11):1–11.

Article  Google Scholar 

Murphy C, Mobasheri A, Táncos Z, Kobolák J, Dinnyés A. The potency of induced pluripotent stem cells in cartilage regeneration and osteoarthritis treatment. Cell Biol. Transl. Med. 2017;1:55–68.

Google Scholar 

Zhang M, Shi J, Xie M, Wen J, Niibe K, Zhang X, et al. Recapitulation of cartilage/bone formation using iPSCs via biomimetic 3D rotary culture approach for developmental engineering. Biomaterials. 2020;260:120334.

Article  CAS  Google Scholar 

Wolfs E, Verfaillie CM, Van Laere K, Deroose CM. Radiolabeling strategies for radionuclide imaging of stem cells. Stem Cell Rev. Rep. 2015;11(2):254–74.

Article  CAS  Google Scholar 

Bulte JW, Daldrup-Link HE. Clinical tracking of cell transfer and cell transplantation: trials and tribulations. Radiology. 2018;289(3):604–15.

Article  Google Scholar 

Kim MH, Lee YJ, Kang JH. Stem cell monitoring with a direct or indirect labeling method. Nucl. Med. Mol. Imaging. 2016;50(4):275–83.

Article  CAS  Google Scholar 

Li M, Luo X, Lv X, Liu V, Zhao G, Zhang X, et al. In vivo human adipose-derived mesenchymal stem cell tracking after intra-articular delivery in a rat osteoarthritis model. Stem Cell Res. Ther. 2016;7(1):1–13.

Article  Google Scholar 

Chen G, Zhang Y, Li C, Wang Q. Near infrared Ag 2 S quantum dots: synthesis, functionalization, and in vivo stem cell tracking applications. Near Infrared-Emitting Nanoparticles for Biomedical Applications: Springer; 2020. p. 279–304.

Google Scholar 

Jurgielewicz P, Harmsen S, Wei E, Bachmann MH, Ting R, Aras O. New imaging probes to track cell fate: reporter genes in stem cell research. Cell. Mol. Life Sci. 2017;74(24):4455–69.

Article  CAS  Google Scholar 

Yang C, Tian R, Liu T, Liu G. MRI reporter genes for noninvasive molecular imaging. Molecules. 2016;21(5):580.

Article  Google Scholar 

Accomasso L, Gallina C, Turinetto V, Giachino C. Stem cell tracking with nanoparticles for regenerative medicine purposes: an overview. Stem Cells Int. 2016. https://doi.org/10.1155/2016/7920358.

Santoso MR, Yang PC. Magnetic nanoparticles for targeting and imaging of stem cells in myocardial infarction. Stem cells international. 2016;2016.

Lee S, Yoon HI, Na JH, Jeon S, Lim S, Koo H, et al. In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface. Biomaterials. 2017;139:12–29.

Article  CAS  Google Scholar 

Guerrini L, Alvarez-Puebla RA, Pazos-Perez N. Surface modifications of nanoparticles for stability in biological fluids. Materials. 2018;11(7):1154.

Article  Google Scholar 

Yi DK, Nanda SS, Kim K, Selvan ST. Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. J. Mater. Chem. B2017;5(48):9429-9451.

Wang X, Wang X, Bai X, Yan L, Liu T, Wang M, et al. Nanoparticle ligand exchange and its effects at the nanoparticle–cell membrane interface. Nano Lett. 2018;19(1):8–18.

留言 (0)

沒有登入
gif