In Vivo Evaluation of the Regenerative Capacity of a Nanofibrous, Prevascularized, Load-Bearing Scaffold for Bone Tissue Engineering

Soleymanha M, et al. Survey of 2582 cases of acute orthopedic trauma. Trauma monthly. 2014;19(4):e16215. https://doi.org/10.5812/traumamon.16215.

Article  Google Scholar 

Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and Economic Burden of Osteoporosis-Related Fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22:465–75. https://doi.org/10.1359/jbmr.061113.

Article  Google Scholar 

Liu Y, et al. Hierarchical Structures of Bone and Bioinspired Bone Tissue Engineering. Small. 2016;12(34):4611–32. https://doi.org/10.1002/smll.201600626.

Article  CAS  Google Scholar 

Rodan GA. Introduction to Bone Biology. Bone. 1992;13:3282(09)80003-3. https://doi.org/10.1016/s8756-.

Article  Google Scholar 

Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551–5. https://doi.org/10.1016/j.injury.2011.03.031.

Article  Google Scholar 

Mathew G, Hanson BP. Global burden of trauma: Need for effective fracture therapies. Indian journal of orthopaedics. 2009;43(2):111–6. https://doi.org/10.4103/0019-5413.50843.

Article  Google Scholar 

Brinker MR, Daniel P, Oʼconnor. The Incidence of Fractures and Dislocations Referred for Orthopaedic Services in a Capitated Population. The Journal of Bone & Joint Surgery. 2004;86(2):290–7. https://doi.org/10.2106/00004623-200402000-00011.

Article  Google Scholar 

Baldwin P, et al. Autograft, Allograft, and Bone Graft Substitutes. J Orthop Trauma. 2019:1. https://doi.org/10.1097/bot.0000000000001420.

De Long WG, et al. Bone Grafts and Bone Graft Substitutes in Orthopaedic Trauma Surgery. The Journal of Bone and Joint Surgery-American. 2007;89(3):649–58. https://doi.org/10.2106/00004623-200703000-00026.

Article  Google Scholar 

Dorozhkin SV. Bioceramics of Calcium Orthophosphates. Biomaterials. 2010;31(7):1465–85. https://doi.org/10.1016/j.biomaterials.2009.11.050.

Article  CAS  Google Scholar 

Keating JF, Mcqueen MM. Substitutes For Autologous Bone Graft In Orthopaedic Trauma. J Bone Joint Surg. 2001;83(1):38. https://doi.org/10.1302/0301-620x.83b1.11952.

Article  Google Scholar 

Howard D, et al. Tissue engineering: strategies, stem cells and scaffolds. J Anat. 2008;213(1):66–72. https://doi.org/10.1111/j.1469-7580.2008.00878.x.

Article  CAS  Google Scholar 

Jun I, et al. Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication. Int J Mol Sci. 2018;19(3):745. https://doi.org/10.3390/ijms19030745.

Article  CAS  Google Scholar 

Yan X, Yao H, Luo J, Li Z, Wei J. Functionalization of Electrospun Nanofiber for Bone Tissue Engineering. Polymers. 2022;14(14):2940. https://doi.org/10.3390/polym14142940.

Article  CAS  Google Scholar 

Amini AR, et al. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363–408.

Article  Google Scholar 

Lopes SV, Collins MN, Reis RL, Oliveira JM, Silva-Correia J. Vascularization Approaches in Tissue Engineering: Recent Developments on Evaluation Tests and Modulation. ACS Appl Bio Mater. 2021;4(4):2941–56. https://doi.org/10.1021/ACSABM.1C00051/ASSET/IMAGES/MEDIUM/MT1C00051_0007.GIF.

Article  CAS  Google Scholar 

Taylor BL, et al. Investigating Processing Techniques for Bovine Gelatin Electrospun Scaffolds for Bone Tissue Regeneration. J Biomed Mater Res B Appl Biomater. 2016;105(5):1131–40. https://doi.org/10.1002/jbm.b.33622.

Article  CAS  Google Scholar 

Cipriano, James. Characterization of a pre-vascularized biomimetic tissue engineered scaffold for bone. Retrieved from https://doi.org/10.7282/T35H7KQX

Andric T, et al. Fabrication and characterization of three-dimensional electrospun scaffolds for bone tissue engineering. Regenerative Engineering and Translational Medicine. 2015;1(1-4):32–41.

Article  Google Scholar 

Taylor B, et al. Decellularized cortical bone scaffold promotes organized neovascularization in vivo. Tissue Eng A. 2019;25(13-14):964–77.

Article  CAS  Google Scholar 

Wright LD, et al. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering. Biomed Mater. 2010;5(5):055006.

Article  CAS  Google Scholar 

Patel PP, et al. Mechanical and Biological Evaluation of a Hydroxyapatite Reinforced Scaffold for Bone Regeneration. J Biomed Mater Res A. 2019;107(4):732–41. https://doi.org/10.1002/jbm.a.36588.

Article  CAS  Google Scholar 

Ai X, Pellegrini M, Freeman JW. The Use of Alginate to Inhibit Mineralization for Eventual Vascular Development. Regenerative Engineering and Translational Medicine. 2020:1–10.

Witjas FMR, van den Berg BM, van den Berg CW, Engelse MA, Rabelink TJ. Concise Review: The Endothelial Cell Extracellular Matrix Regulates Tissue Homeostasis and Repair. Stem Cells Transl Med. 2019;8(4):375–82. https://doi.org/10.1002/sctm.18-0155.

Article  Google Scholar 

Xing Q, et al. Decellularization of Fibroblast Cell Sheets for Natural Extracellular Matrix Scaffold Preparation. Tissue Engineering Part C: Methods. 2015;21(1):77–87. https://doi.org/10.1089/ten.tec.2013.0666.

Article  CAS  Google Scholar 

Sinibaldi K. Harvesting, Storage, and Application of Cortical Allografts. Teton New Media: Current Techniques in Small Animal Surgery, by M. Joseph. Bojrab; 2014. p. 864–5.

Google Scholar 

留言 (0)

沒有登入
gif