Estrogen-sensitive activation of SGK1 induces M2 macrophages with anti-inflammatory properties and a Th2 response at the maternal–fetal interface

Practice Committee of the American Society for Reproductive Medicine. Electronic address, a.a.o. definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril. 2020;113:533–5. https://doi.org/10.1016/j.fertnstert.2019.11.025.

Article  Google Scholar 

Dimitriadis E, Menkhorst E, Saito S, Kutteh WH, Brosens JJ. Recurrent pregnancy loss. Nat Rev Dis Primers. 2020;6:98. https://doi.org/10.1038/s41572-020-00228-z.

Article  PubMed  Google Scholar 

Coomarasamy A, Dhillon-Smith RK, Papadopoulou A, Al-Memar M, Brewin J, Abrahams VM, Maheshwari A, Christiansen OB, Stephenson MD, Goddijn M, et al. Recurrent miscarriage: evidence to accelerate action. Lancet. 2021;397:1675–82. https://doi.org/10.1016/s0140-6736(21)00681-4.

Article  CAS  PubMed  Google Scholar 

de Ziegler D, Frydman RF. Recurrent pregnancy losses, a lasting cause of infertility. Fertil Steril. 2021;115:531–2. https://doi.org/10.1016/j.fertnstert.2020.12.004.

Article  CAS  PubMed  Google Scholar 

Iske J, Elkhal A, Tullius SG. The Fetal-Maternal Immune Interface in Uterus Transplantation. Trends Immunol. 2020;41:213–24. https://doi.org/10.1016/j.it.2020.01.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

You Y, Stelzl P, Joseph DN, Aldo PB, Maxwell AJ, Dekel N, Liao A, Whirledge S, Mor G. TNF-α regulated endometrial stroma secretome promotes trophoblast invasion. Front Immunol. 2021;12:737401. https://doi.org/10.3389/fimmu.2021.737401.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pennisi E. Tamed immune reaction aids pregnancy Evolutionary studies show how dialing back inflammation allows embryo implantation. Science. 2018;359:260–260. https://doi.org/10.1126/science.359.6373.260.

Article  CAS  PubMed  Google Scholar 

Jiang XX, Du MR, Li M, Wang HM. Three macrophage subsets are identified in the uterus during early human pregnancy. Cell Mol Immunol. 2018;15:1027–37. https://doi.org/10.1038/s41423-018-0008-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ross EA, Devitt A, Johnson JR. Macrophages: the good, the bad, and the gluttony. Front Immunol. 2021;12:708186. https://doi.org/10.3389/fimmu.2021.708186.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao Y, Xu XH, Jin L. Macrophage polarization in physiological and pathological pregnancy. Front Immunol. 2019;10:792. https://doi.org/10.3389/fimmu.2019.00792.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mor G, Aldo P, Alvero AB. The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol. 2017;17:469–82. https://doi.org/10.1038/nri.2017.64.

Article  CAS  PubMed  Google Scholar 

Zhang YH, He M, Wang Y, Liao AH. Modulators of the balance between M1 and M2 macrophages during pregnancy. Front Immunol. 2017;8:120. https://doi.org/10.3389/fimmu.2017.00120.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding J, Zhang Y, Cai X, Zhang Y, Yan S, Wang J, Zhang S, Yin T, Yang C, Yang J. Extracellular vesicles derived from M1 macrophages deliver miR-146a-5p and miR-146b-5p to suppress trophoblast migration and invasion by targeting TRAF6 in recurrent spontaneous abortion. Theranostics. 2021;11:5813–30. https://doi.org/10.7150/thno.58731.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu N, Weng Y, Liu W, Chen L, Iqbal F, Yin Z, He Y, Wang Y. TLRs induce Th1/Th2 responses by affecting the secretion of CCL2 at the maternal-foetal interface. Int Immunopharmacol. 2021;100:108070. https://doi.org/10.1016/j.intimp.2021.108070.

Article  CAS  PubMed  Google Scholar 

Yuk JM, Kim TS, Kim SY, Lee HM, Han J, Dufour CR, Kim JK, Jin HS, Yang CS, Park KS, et al. Orphan Nuclear Receptor ERRalpha controls macrophage metabolic signaling and A20 expression to negatively regulate TLR-induced inflammation. Immunity. 2015;43:80–91. https://doi.org/10.1016/j.immuni.2015.07.003.

Article  CAS  PubMed  Google Scholar 

Firmal P, Shah VK, Chattopadhyay S. Insight into TLR4-mediated immunomodulation in normal pregnancy and related disorders. Front Immunol. 2020;11:807. https://doi.org/10.3389/fimmu.2020.00807.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong Y, Zhang Y, Liu W, Zhao Y, Zou L, Liu X. TLR4 modulates senescence and paracrine action in placental mesenchymal stem cells via inhibiting hedgehog signaling pathway in preeclampsia. Oxid Med Cell Longev. 2022;2022:7202837. https://doi.org/10.1155/2022/7202837.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Presicce P, Cappelletti M, Senthamaraikannan P, Ma FY, Morselli M, Jackson CM, Mukherjee S, Miller LA, Pellegrini M, Jobe AH, et al. TNF-signaling modulates neutrophil-mediated immunity at the feto-maternal interface during LPS-induced intrauterine inflammation. Front Immunol. 2020;11:17. https://doi.org/10.3389/fimmu.2020.00558.

Article  CAS  Google Scholar 

Kolben TM, Rogatsch E, Hester A, Kuhn C, Schmoeckel E, Czogalla B, Mahner S, Jeschke U, Kolben T. Involvement of ILR4 alpha and TLR4 in miscarriages. J Reprod Immunol. 2019;131:36–43. https://doi.org/10.1016/j.jri.2018.12.001.

Article  CAS  PubMed  Google Scholar 

Couture C, Brien ME, Boufaied I, Duval C, Soglio DD, Enninga EAL, Cox B, Girard S. Proinflammatory changes in the maternal circulation, maternal-fetal interface, and placental transcriptome in preterm birth. Am J Obstet Gynecol. 2022. https://doi.org/10.1016/j.ajog.2022.08.035.

Article  PubMed  Google Scholar 

Zou HJ, Yin JQ, Zhang ZG, Xiang HF, Wang J, Zhu DM, Xu XF, Cao YX. Destruction in maternal-fetal interface of URSA patients via the increase of the HMGB1-RAGE/TLR2/TLR4-NF-kappa B signaling pathway. Life Sci. 2020;250:117543. https://doi.org/10.1016/j.lfs.2020.117543.

Article  CAS  PubMed  Google Scholar 

Xu L, Li Y, Sang Y, Li D-J, Du M. Crosstalk between trophoblasts and decidual immune cells: the cornerstone of maternal-fetal immunotolerance. Front Immunol. 2021;12:642392. https://doi.org/10.3389/fimmu.2021.642392.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crompton R, Williams H, Ansell D, Campbell L, Holden K, Cruickshank S, Hardman MJ. Oestrogen promotes healing in a bacterial LPS model of delayed cutaneous wound repair. Lab Invest. 2016;96:439–49. https://doi.org/10.1038/labinvest.2015.160.

Article  CAS  PubMed  Google Scholar 

Zhang ML, Chen H, Yang Z, Zhang MN, Wang X, Zhao K, Li X, Xiu N, Tong F, Wang YX. 17 beta-estradiol attenuates LPS-induced macrophage inflammation in vitro and sepsis-induced vascular inflammation in vivo by upregulating miR-29a-5p expression. Mediators Inflamm. 2021;2021:16. https://doi.org/10.1155/2021/9921897.

Article  CAS  Google Scholar 

Hou H, Adzika GK, Wu Q, Ma T, Ma Y, Geng J, Shi M, Fu L, Rizvi R, Gong Z, et al. Estrogen attenuates chronic stress-induced cardiomyopathy by adaptively regulating macrophage polarizations via beta2-adrenergic receptor modulation. Front Cell Dev Biol. 2021;9:737003. https://doi.org/10.3389/fcell.2021.737003.

Article  PubMed  PubMed Central  Google Scholar 

Manukyan G, Martirosyan A, Slavik L, Ulehlova J, Dihel M, Papajik T, Kriegova E. 17 beta-estradiol promotes proinflammatory and procoagulatory phenotype of innate immune cells in the presence of antiphospholipid antibodies. Biomedicines. 2020;8:11. https://doi.org/10.3390/biomedicines8060162.

Article  CAS  Google Scholar 

Qiu J, Zhang R, Xie Y, Wang L, Ge K, Chen H, Liu X, Wu J, Wang Y. Estradiol attenuates the severity of primary toxoplasma gondii infection-induced adverse pregnancy outcomes through the regulation of tregs in a dose-dependent manner. Front Immunol. 2018;9:1102. https://doi.org/10.3389/fimmu.2018.01102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park M, Park SH, Park H, Kim H-R, Lim HJ, Song H. ADAMTS-1: a novel target gene of an estrogen-induced transcription factor, EGR1, critical for embryo implantation in the mouse uterus. Cell Biosci. 2021;11:155. https://doi.org/10.1186/s13578-021-00672-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Chen Z, Xiao Z, Weng Y, Yang M, Yang L, Tu Y, Zhou H, Wu L, Shun F, et al. Estrogen induces IDO expression via TGF-β in chorionic villi and decidua during early stages of pregnancy. Int J Mol Med. 2020;46:1186–96. https://doi.org/10.3892/ijmm.2020.4658.

Article  CAS  PubMed  Google Scholar 

He W-H, Jin M-M, Liu A-P, Zhou Y, Hu X-L, Zhu Y-M, Liu A-X. Estradiol promotes trophoblast viability and invasion by activating SGK1. Biomed Pharmacother. 2019;117:109092. https://doi.org/10.1016/j.biopha.2019.109092.

Article  CAS  PubMed  Google Scholar 

Wang, Z.; Ni, S.; Zhang, H.; Fan, Y.; Xia, L.; Li, N. Silencing SGK1 alleviates osteoarthritis through epigenetic regulation of CREB1 and ABCA1 expression. Life sciences 2020, 118733, doi:https://doi.org/10.1016/j.lfs.2020.118733.

Ren J, Han X, Lohner H, Liang R, Liang S, Wang H. Serum- and glucocorticoid-inducible kinase 1 promotes alternative macrophage polarization and restrains inflammation through FoxO1 and STAT3 signaling. J Immunol (Baltimore, Md : 1950). 2021;207:268–80. https://doi.org/10.4049/jimmunol.2001455.

Article  CAS  Google Scholar 

Yang YJH, Istomine R, Alvarez F, Al-Aubodah TA, Shi XQ, Takano T, Thornton AM, Shevach EM, Zhang J, Piccirillo CA. Salt Sensing by Serum/Glucocorticoid-regulated kinase 1 promotes Th17-like inflammatory adaptation of foxp(3+) regulatory T cells. Cell reports. 2020;30:1515-+. https://doi.org/10.1016/j.celrep.2020.01.002.

Article  CAS  PubMed  Google Scholar 

Salker MS, Christian M, Steel JH, Nautiyal J, Lavery S, Trew G, Webster Z, Al-Sabbagh M, Puchchakayala G, Foller M, et al. Deregulation of the serum- and glucocorticoid-inducible kinase SGK1 in the endometrium causes reproductive failure. Nat Med. 2011;17:1509–13. https://doi.org/10.1038/nm.2498.

Article 

留言 (0)

沒有登入
gif