Titanium biogenic nanoparticles to help the growth of Trichoderma harzianum to be used in biological control

Liu C, Zhou H, Zhou J. The applications of nanotechnology in crop production. Molecules. 2021;26:1–16.

Article  Google Scholar 

RUI M, et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers Plant Sci. 2016. https://doi.org/10.3389/fpls.2016.00815.

Article  Google Scholar 

Fatima F, Hashim A, Anees S. Efficacy of nanoparticles as nanofertilizer production: a review. Environ Sci Pollut Res. 2021;28:1292–303.

Article  CAS  Google Scholar 

Maruyama C, Bilesky-Jose N, Lima R, Fraceto LF. Encapsulation of Trichoderma harzianum preserves enzymatic activity and enhances the potential for biological control. Front Bioeng Biotechnol. 2020;8:1–14.

Article  Google Scholar 

Mali SC, Raj S, Trivedi R. Nanotechnology a novel approach to enhance crop productivity. Biochem Biophys Rep. 2020;24:1–4.

Google Scholar 

Wang CY, Yang J, Qin JC, Yang YW. Eco-friendly nanoplatforms for crop quality control, protection, and nutrition. Adv Sci. 2021;8:1–27.

Google Scholar 

WANG S, et al. A novel upconversion luminescence turn-on nanosensor for ratiometric detection of organophosphorus pesticides. RSC Adv. 2016. https://doi.org/10.1039/C6RA05978C.

Article  PubMed  Google Scholar 

Sharma P, Pandey V, Sharma MMM, Patra A, Singh B, Mehta S, Husen A. A review on biosensors and nanosensors application in agroecosystems. Nanoscale Res Lett. 2021;16:1–24.

Article  Google Scholar 

Pasquoto-stigliani T, Campos EVR, Oliveira JL, Silva CMG, Bilesky-José N, et al. Nanocapsules containing neem (Azadirachta Indica) oil development characterization, and toxicity evaluation. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-06092-.

Article  PubMed  PubMed Central  Google Scholar 

Oliveira JL, et al. Geraniol encapsulated in chitosan/gum arabic nanoparticles: a promising system for pest management in sustainable agriculture. J Agricult Food Chem. 2018;66:5325–34.

Article  Google Scholar 

Pascoli M, An ecotoxicological perspective, et al. Neem oil based nanopesticide as an environmentally-friendly formulation for applications in sustainable agriculture. Sci Total Environ. 2019;677(57):67.

Google Scholar 

Oliveira JL, Fraceto LF, Bravo A, Polanczyk RA. Encapsulation strategies for Bacillus thuringiensis: from now to the future. J Agric Food Chem. 2021;69:4564–77.

Article  PubMed  Google Scholar 

Dam P, Paret ML, Mondal R, Mondal AK. Advancement of noble metallic nanoparticles in agriculture: a promising future. Pedosphere. 2023;33:116–28.

Article  Google Scholar 

Guilger-Casagrande M, Germano-Costa T, Bilesky-José N, Pasquoto-Stigliani T, Carvalho L, Fraceto LF, Lima R. Influence of the capping of biogenic silver nanoparticles on their toxicity and mechanism of action towards Sclerotinia sclerotiorum. J Nanobiotechnol. 2021;19:1–18.

Article  Google Scholar 

Andersen CP, et al. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environ Toxicol hem. 2016;35(9):2223–9.

CAS  Google Scholar 

Lyu S, Wei X, Chen J, Wang C, Wang X, Pand D. Titanium as a beneficial element for crop production. Front Plant Sci. 2017;8:1–19.

Article  Google Scholar 

Mathew SS, Sunny NE, Shanmugam V. Green synthesis of anatase titanium dioxide nanoparticles using Cuminum cyminum seed extract; effect on Mung bean (Vigna radiata) seed germination. Inorg Chem Commun. 2021;126:1–7.

Article  Google Scholar 

Sidhu AK, Verma N, Kaushal P. Role of biogenic capping agents in the synthesis of metallic nanoparticles and evaluation of their therapeutic potential. Front Nanotechnol. 2022;3:1–17.

Article  Google Scholar 

Ballottin D, et al. Elucidating protein involvement in the stabilization of the biogenic silver nanoparticles. Nanoscale Res Lett. 2016. https://doi.org/10.1186/s11671-016-1538-y.

Article  PubMed  PubMed Central  Google Scholar 

Guilger M, et al. Biogenic silver nanoparticles based on Trichoderma harzianum: synthesis characterization, toxicity evaluation and biological activity. Sci Rep. 2017. https://doi.org/10.1038/srep44421.

Article  PubMed  PubMed Central  Google Scholar 

Guilger-Casagrande M, Germano-Costa T, Pasquoto-Stigliani T, Fraceto LF, Lima R. Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum. Sci Rep. 2019;9:14351.

Article  PubMed  PubMed Central  Google Scholar 

Bilesky-José N, Maruyama C, Germano-Costa T, Campos E, Carvalho L, Grillo R, Fraceto LF, Lima R. Biogenic α-Fe2O3 nanoparticles enhance the biological activity of trichoderma against the plant pathogen Sclerotinia sclerotiorum. ACS Sustain Chem Eng. 2021;9:1669–83.

Article  Google Scholar 

Ramírez-Valdespino CA, Orrantia-Borunda E. Trichoderma and nanotechnology in sustainable agriculture: a review. Frontiers Fungal Biol. 2021;2:1–16.

Article  Google Scholar 

Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F, Sharma A. Trichoderma: the “secrets” of a multitalented biocontrol agent. Plants. 2020;9:1–25.

Article  Google Scholar 

BononI L, Chiaramonte JB, Pansa CC, Moitinho MA, Melo IS. Phosphorus-solubilizing Trichoderma spp from amazon soils improve soybean plant growth. Sci Rep. 2020;10:2058.

Article  Google Scholar 

Alfiky A, Weisskopf L. Deciphering Trichoderma–plant-pathogen interactions for better development of biocontrol applications. J Fungi. 2021;7:1–18.

Article  Google Scholar 

Sarangi S, Swain H, Adak T, Bhattacharyya P, Mukherjee AK, Kumar G, Mehetre ST. Trichoderma-mediated rice straw compost promotes plant growth and imparts stress tolerance. Environ Sci Pollut Res. 2021;28:44014–27.

Article  CAS  Google Scholar 

O’Sullivan CA, Belt K, Thatcher LF. Tackling control of a cosmopolitan phytopathogen: sclerotinia. Front Plant Sci. 2021;12:1–18.

Article  Google Scholar 

Xu L, Li G, Jiang D, Chen W. Sclerotinia sclerotiorum: an evaluation of virulence theories. Annu Rev Phytopathol. 2018;56:311–38.

Article  CAS  PubMed  Google Scholar 

Asad, S. A. 2022 Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases—A review. Ecological Complexity. 49 100978

Mironenka J, Rózalska S, Sobón A, Bernat P. Trichoderma harzianum metabolites disturb Fusarium culmorum metabolism: metabolomic and proteomic studies. Microbiol Res. 2021;249: 126770.

Article  CAS  PubMed  Google Scholar 

Liu Q, Meng X, Li T, Raza W, Liu D, Shen Q. Possible role of increasing nutrient availabilities the growth promotion of peppers (Capsicum annuum L) by Trichoderma guizhouense NJAU4742-based biological organic fertilizer. Microorganisms. 2020;8(1):23.

Google Scholar 

Wang H, Zhang R, Mao Y, Jiang W, Chen X, Shen X, Yin C, Mao Z. Effects of Trichoderma asperellum 6S–2 on apple tree growth and replanted soil microbial environment. J Fungi. 2022;8:1–18.

Google Scholar 

Morán-Diez ME, Alba AEM, Rubio MB, Hermosa R, Monte E. Trichoderma and the plant heritable priming responses. J Fungi. 2021;7:1–23.

Article  Google Scholar 

Swain H, Adak T, Mukherjee AK, Sarangi S, Samal P, Khandual A, Jena R, Bhattacharyya P, Naik SK, Mehetre ST, Baite MS, Sunil Kumar M, Zaidi NW. Biopriming With Trichoderma strains isolated from tree bark improves plant growth, antioxidative defense system in rice and enhance straw degradation capacity front. Microbiol. 2021;12(1):15.

Google Scholar 

Marra R, Lombardi N, Derrico G, Troisi J, Scala G, Vinale F, et al. Application of Trichoderma strains and metabolites enhances soybean productivity and nutrient content. J Agric Food Chem. 2019;67:1814–22.

Article  CAS  PubMed  Google Scholar 

Mansoor A, Khurshid Z, Khan MT, Mansoor E, Butt FA, Jamal A, Palma PJ. Medical and dental applications of titania nanoparticles: an overview. Nanomaterials. 2022;12:1–41.

Article  Google Scholar 

Satti SH, Raja NI, Javed B, Akram A, Mashwani ZR, Ahmad MS, Ikram M. Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. PLoS ONE. 2021;6:1–19.

Google Scholar 

Raliya R, Biswas P, Tarafdar JC. TiO2 nanoparticle biosynthesis and its physiological effect on mungbean (Vigna radiata L). Biotechnol Rep. 2015;5:22–6.

Article  Google Scholar 

Geraldine AM, et al. Cell wall-degrading enzymes and parasitism of sclerotia are key factors on field biocontrol of white mold by Trichoderma spp. Biol Control. 2013;67:308–16.

Article  CAS  Google Scholar 

Qualhato TF, et al. evaluation of antagonism and hydrolytic enzyme production mycoparasitism studies of Trichoderma species against three phytopathogenic fung. Biotechnol Lett. 2013;35(1461):1468.

Google Scholar 

Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;7(72):248–54.

Article  Google Scholar 

Kirthi AV, et al. Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Mater Lett. 2011;65:2745–7.

Article  CAS  Google Scholar 

Djurišić AB, et al. Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small J. 2015;11(1):26–44.

Article  Google Scholar 

Hole P. Particle Tracking Analysis (PTA). In: Hodoroaba VD, Unger WES, Shard AG, editors. Characterization of nanoparticles measurement processes for nanoparticles. Amsterdam: Elsevier; 2019.

Google Scholar 

Monteiro RA, Camara MC, Oliveira JL, et al. Zein based-nanoparticles loaded botanical pesticides in pest control: An enzyme stimuli-, p. responsive approach aiming sustainable agriculture. J Hazard Mater. 2021;417:1–11.

Article  Google Scholar 

Mittal N, Kaur G. Investigations on polymeric nanoparticles for ocular delivery. Adv Polym Technol. 2019;2019:1–15.

Article  Google Scholar 

Agrawal T, Kotasthane AS. Chitinolytic assay of indigenous trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. Springerplus. 2012;1:1–10.

Article  Google Scholar 

Kamiloglu S, Sari G, Ozdal T, Capanoglu E. Guidelines for cell viability assays. Food Frontiers. 2020;1:332–49.

Article  Google Scholar 

留言 (0)

沒有登入
gif