Loss of CAA interruption and intergenerational CAG instability in Chinese patients with Huntington’s disease

Warby SC et al (2011) HTT haplotypes contribute to differences in Huntington disease prevalence between Europe and East Asia. Eur J Hum Genet 19(5):561–566

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li HL, Zhang YB, Wu ZY (2017) Development of research on Huntington disease in China. Neurosci Bull 33(3):312–316

Article  PubMed  Google Scholar 

Podvin S et al (2019) Multiple clinical features of Huntington’s disease correlate with mutant HTT gene CAG repeat lengths and neurodegeneration. J Neurol 266(3):551–564

Article  CAS  PubMed  Google Scholar 

Li HL et al (2019) Clinical and genetic profiles in Chinese patients with Huntington’s disease: a ten-year multicenter study in China. Aging Dis 10(5):1003–1011

Article  PubMed  PubMed Central  Google Scholar 

Langbehn DR et al (2004) A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet 65(4):267–277

Article  CAS  PubMed  Google Scholar 

Warby SC et al (2009) CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup. Am J Hum Genet 84(3):351–366

Article  CAS  PubMed  PubMed Central  Google Scholar 

Becanovic K et al (2015) A SNP in the HTT promoter alters NF-kappaB binding and is a bidirectional genetic modifier of Huntington disease. Nat Neurosci 18(6):807–816

Article  CAS  PubMed  Google Scholar 

Kim KH et al (2020) Genetic and functional analyses point to FAN1 as the source of multiple Huntington disease modifier effects. Am J Hum Genet 107(1):96–110

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flower M et al (2019) MSH3 modifies somatic instability and disease severity in Huntington’s and myotonic dystrophy type 1. Brain 142(7):1876–1886

Ciosi M et al (2019) A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes. EBioMedicine 48:568–580

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li XY et al (2020) Haplotype analysis encompassing HTT gene in Chinese patients with Huntington’s disease. Eur J Neurol 27(2):273–279

Article  PubMed  Google Scholar 

Cheng HR et al (2020) Correlation between CCG polymorphisms and CAG repeats during germline transmission in chinese patients with Huntington’s disease. Neurosci Bull 36(7):811–814

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li XY et al (2019) Effect of apolipoprotein E genotypes on Huntington’s disease phenotypes in a Han Chinese population. Neurosci Bull 35(4):756–762

Article  CAS  PubMed  PubMed Central  Google Scholar 

Genetic Modifiers of Huntington’s Disease Consortium (2019) CAG repeat not polyglutamine length determines timing of Huntington’s disease onset. Cell 178(4):887–900 e14

Wright GEB et al (2019) Length of uninterrupted CAG, independent of polyglutamine size, results in increased somatic instability, hastening onset of Huntington disease. Am J Hum Genet 104(6):1116–1126

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wright GEB et al (2020) Interrupting sequence variants and age of onset in Huntington’s disease: clinical implications and emerging therapies. Lancet Neurol 19(11):930–939

Article  CAS  PubMed  Google Scholar 

Findlay Black H et al (2020) Frequency of the loss of CAA interruption in the HTT CAG tract and implications for Huntington disease in the reduced penetrance range. Genet Med 22(12):2108–2113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Houge G et al (2013) De novo Huntington disease caused by 26–44 CAG repeat expansion on a low-risk haplotype. Neurology 81(12):1099–1100

Article  PubMed  PubMed Central  Google Scholar 

Li XY et al (2022) The Chinese version of UHDRS in Huntington’s disease: reliability and validity assessment. J Huntingtons Dis 11(4):407–413

Article  CAS  PubMed  Google Scholar 

Ross CA et al (2014) Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 10(4):204–216

Article  CAS  PubMed  Google Scholar 

Dong Y et al (2013) Chinese patients with Huntington’s disease initially presenting with spinocerebellar ataxia. Clin Genet 83(4):380–383

Article  CAS  PubMed  Google Scholar 

Green MR, Sambrook J (2021) Cloning polymerase chain reaction (PCR) products: TA cloning. Cold Spring Harb Protoc (6)

Lee JM et al (2012) CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology 78(10):690–695

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watanabe M et al (2000) De novo expansion of a CAG repeat in a Japanese patient with sporadic Huntington’s disease. J Neurol Sci 178(2):159–162

Article  CAS  PubMed  Google Scholar 

Semaka A, Collins JA, Hayden MR (2010) Unstable familial transmissions of Huntington disease alleles with 27–35 CAG repeats (intermediate alleles). Am J Med Genet B Neuropsychiatr Genet 153B(1):314–320

CAS  PubMed  Google Scholar 

Semaka A et al (2013) CAG size-specific risk estimates for intermediate allele repeat instability in Huntington disease. J Med Genet 50(10):696–703

Article  CAS  PubMed  Google Scholar 

Zhou MY, Gomez-Sanchez CE (2000) Universal TA cloning. Curr Issues Mol Biol 2(1):1–7

CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif