Backgrounded Membrane Imaging—A Valuable Alternative for Particle Detection of Biotherapeutics?

Hermeling S, Crommelin DJA, Schellekens H, Jiskoot W. Structure-immunogenicity relationships of therapeutic proteins. Pharmaceut Res. 2004;21:897–903. https://doi.org/10.1023/b:pham.0000029275.41323.a6.

Article  CAS  Google Scholar 

Ripple DC, Dimitrova MN. Protein particles: what we know and what we do not know. J Pharm Sci. 2012;101:3568–79. https://doi.org/10.1002/jps.23242.

Article  CAS  PubMed  Google Scholar 

Langille SE. Particulate matter in injectable drug products. PDA J Pharm Sci Tech. 2013;67:186–200. https://doi.org/10.5731/pdajpst.2013.00922.

Article  CAS  Google Scholar 

Kijanka G, Bee JS, Korman SA, Wu Y, Roskos LK, Schenerman MA, et al. Submicron size particles of a murine monoclonal antibody are more immunogenic than soluble oligomers or micron size particles upon subcutaneous administration in mice. J Pharm Sci. 2018;107:2847–59. https://doi.org/10.1016/j.xphs.2018.06.029.

Article  CAS  PubMed  Google Scholar 

Garidel P, Kuhn AB, Schäfer LV, Karow-Zwick AR, Blech M. High-concentration protein formulations: how high is high? Eur J Pharm Biopharm. 2017;119:353–60. https://doi.org/10.1016/j.ejpb.2017.06.029.

Article  CAS  PubMed  Google Scholar 

Corvari V, Narhi LO, Spitznagel TM, Afonina N, Cao S, Cash P, et al. Subvisible (2–100 μm) particle analysis during biotherapeutic drug product development: part 2, experience with the application of subvisible particle analysis. Biologicals. 2015;43:457–73. https://doi.org/10.1016/j.biologicals.2015.07.011.

Article  CAS  PubMed  Google Scholar 

Narhi LO, Corvari V, Ripple DC, Afonina N, Cecchini I, Defelippis MR, et al. Subvisible (2–100 μm) particle analysis during biotherapeutic drug product development: part 1, considerations and strategy. J Pharm Sci. 2015;104:1899–908. https://doi.org/10.1002/jps.24437.

Article  CAS  PubMed  Google Scholar 

Gross-Rother J, Blech M, Preis E, Bakowsky U, Garidel P. Particle detection and characterization for biopharmaceutical applications: current principles of established and alternative techniques. Pharmaceutics. 2020;12:1112. https://doi.org/10.3390/pharmaceutics12111112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

den Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, et al. Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharmaceut Res. 2011;28:920–33. https://doi.org/10.1007/s11095-010-0297-1.

Article  CAS  Google Scholar 

Narhi LO, Schmit J, Bechtold-Peters K, Sharma D. Classification of protein aggregates. J Pharm Sci. 2012;101:493–8. https://doi.org/10.1002/jps.22790.

Article  CAS  PubMed  Google Scholar 

Roesch A, Zölls S, Stadler D, Helbig C, Wuchner K, Kersten G, et al. Particles in biopharmaceutical formulations, part 2: an update on analytical techniques and applications for therapeutic proteins, viruses, vaccines and cells. J Pharm Sci. 2021;111:933–50. https://doi.org/10.1016/j.xphs.2021.12.011.

Article  CAS  PubMed  Google Scholar 

Vázquez-Rey M, Lang DA. Aggregates in monoclonal antibody manufacturing processes. Biotechnol Bioeng. 2011;108:1494–508. https://doi.org/10.1002/bit.23155.

Article  CAS  PubMed  Google Scholar 

Garidel P, Kebbel F. Protein therapeutics and aggregates characterized by photon correlation spectroscopy. BioProcess International. 2010;8:38–46.

CAS  Google Scholar 

Gross-Rother J, Herrmann N, Blech M, Pinnapireddy SR, Garidel P, Bakowsky U. The application of STEP-technology® for particle and protein dispersion detection studies in biopharmaceutical research. Int J Pharmaceut. 2018;543:257–68. https://doi.org/10.1016/j.ijpharm.2018.03.050.

Article  CAS  Google Scholar 

Europäisches Arzneibuch. 6th ed. Deutscher Apotheker Verlag; 2022.

USP-NF 2021 Issue 1: The United States Pharmacopeia and National Formulary. 2021.

Zölls S, Tantipolphan R, Wiggenhorn M, Winter G, Jiskoot W, Friess W, et al. Particles in therapeutic protein formulations, part 1: overview of analytical methods. J Pharm Sci. 2012;101:914–35. https://doi.org/10.1002/jps.23001.

Article  CAS  PubMed  Google Scholar 

Zhang L, Shi S, Antochshuk V. Closing the gap: counting and sizing of particles across submicron range by flow cytometry in therapeutic protein products. J Pharm Sci. 2017;106:3215–21. https://doi.org/10.1016/j.xphs.2017.06.007.

Article  CAS  PubMed  Google Scholar 

Quiroz AR, Lamerz J, Cunha TD, Boillon A, Adler M, Finkler C, et al. Factors governing the precision of subvisible particle measurement methods – a case study with a low-concentration therapeutic protein product in a prefilled syringe. Pharmaceut Res. 2016;33:450–61. https://doi.org/10.1007/s11095-015-1801-4.

Article  CAS  Google Scholar 

Gross J, Sayle S, Karow AR, Bakowsky U, Garidel P. Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: influence of experimental and data evaluation parameters. Eur J Pharm Biopharm. 2016;104:30–41. https://doi.org/10.1016/j.ejpb.2016.04.013.

Article  CAS  PubMed  Google Scholar 

Weinbuch D, Zölls S, Wiggenhorn M, Friess W, Winter G, Jiskoot W, et al. Micro–flow imaging and resonant mass measurement (Archimedes) – complementary methods to quantitatively differentiate protein particles and silicone oil droplets. J Pharm Sci. 2013;102:2152–65. https://doi.org/10.1002/jps.23552.

Article  CAS  PubMed  Google Scholar 

Weinbuch D, Jiskoot W, Hawe A. Light obscuration measurements of highly viscous solutions: sample pressurization overcomes underestimation of subvisible particle counts. Aaps J. 2014;16:1128–31. https://doi.org/10.1208/s12248-014-9629-0.

Article  PubMed  PubMed Central  Google Scholar 

Demeule B, Messick S, Shire SJ, Liu J. Characterization of particles in protein solutions: reaching the limits of current technologies. AAPS J. 2010;12:708–15. https://doi.org/10.1208/s12248-010-9233-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zölls S, Gregoritza M, Tantipolphan R, Wiggenhorn M, Winter G, Friess W, et al. How subvisible particles become invisible—relevance of the refractive index for protein particle analysis. J Pharm Sci. 2013;102:1434–46. https://doi.org/10.1002/jps.23479.

Article  CAS  PubMed  Google Scholar 

Patel AR, Lau D, Liu J. Quantification and characterization of micrometer and submicrometer subvisible particles in protein therapeutics by use of a suspended microchannel resonator. Anal Chem. 2012;84:6833–40. https://doi.org/10.1021/ac300976g.

Article  CAS  PubMed  Google Scholar 

Singh SK, Toler MR. Therapeutic proteins, methods and protocols. Methods Mol Biology. 2012;899:379–401. https://doi.org/10.1007/978-1-61779-921-1_24.

Article  CAS  Google Scholar 

Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJA, Middaugh CR, Winter G, et al. Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci. 2009;98:1201–5. https://doi.org/10.1002/jps.21530.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das TK. Protein particulate detection issues in biotherapeutics development—current status. AAPS PharmSciTech. 2012;13:732–46. https://doi.org/10.1208/s12249-012-9793-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh SK, Afonina N, Awwad M, Bechtold-Peters K, Blue JT, Chou D, et al. An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics. J Pharm Sci. 2010;99:3302–21. https://doi.org/10.1002/jps.22097.

Article  CAS  PubMed  Google Scholar 

Narhi L, Jiang Y, Cao S, Benedek K, Shnek D. A critical review of analytical methods for subvisible and visible particles. Curr Pharm Biotechno. 2009;10:373–81. https://doi.org/10.2174/138920109788488905.

Article  CAS  Google Scholar 

Karow AR, Götzl J, Garidel P. Resolving power of dynamic light scattering for protein and polystyrene nanoparticles. Pharm Dev Technol. 2014;20:84–9. https://doi.org/10.3109/10837450.2014.910808.

Article  CAS  PubMed  Google Scholar 

Moussa EM, Panchal JP, Moorthy BS, Blum JS, Joubert MK, Narhi LO, et al. Immunogenicity of therapeutic protein aggregates. J Pharm Sci. 2016;105:417–30. https://doi.org/10.1016/j.xphs.2015.11.002.

Article  CAS  PubMed  Google Scholar 

Kiyoshi M, Shibata H, Harazono A, Torisu T, Maruno T, Akimaru M, et al. Collaborative study for analysis of subvisible particles using flow imaging and light obscuration: experiences in Japanese biopharmaceutical consortium. J Pharm Sci. 2019;108:832–41. https://doi.org/10.1016/j.xphs.2018.08.006.

Article  CAS  PubMed  Google Scholar 

Kotarek J, Stuart C, Paoli SHD, Simak J, Lin T-L, Gao Y, et al. Subvisible particle content, formulation, and dose of an erythropoietin peptide mimetic product are associated with severe adverse postmarketing events. J Pharm Sci. 2016;105:1023–7. https://doi.org/10.1016/s0022-3549(15)00180-x.

Article  CAS  PubMed  Google Scholar 

HORIZON Application Note 2020. https://www.halolabs.com/wp-content/uploads/2020/04/HORIZON-Brochure.pdf. Accessed 12 Aug 2022.

Ripple D, Wayment J, Carrier M. Standards for the optical detection of protein particles. Am Pharm Rev. 2011.

Strickley RG, Lambert WJ. A review of formulations of commercially available antibodies. J Pharm Sci. 2021;110:2590-2608.e56. https://doi.org/10.1016/j.xphs.2021.03.017.

Article  CAS  PubMed  Google Scholar 

Richter C, Lipperheide C, Lipke U, Lamprecht A. Impact of extractables from rubber closures on protein stability under heat stress. Eur J Pharm Biopharm. 2018;130:22–9. https://doi.org/10.1016/j.ejpb.2018.06.009.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif