Cardiovascular complications of diabetes: role of non-coding RNAs in the crosstalk between immune and cardiovascular systems

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.

Article  PubMed  Google Scholar 

Read SH, Kerssens JJ, McAllister DA, Colhoun HM, Fischbacher CM, Lindsay RS, et al. Trends in type 2 diabetes incidence and mortality in Scotland between 2004 and 2013. Diabetologia. 2016;59(10):2106–13.

Article  PubMed  PubMed Central  Google Scholar 

Livingstone SJ, Levin D, Looker HC, Lindsay RS, Wild SH, Joss N, et al. Estimated life expectancy in a scottish cohort with type 1 diabetes, 2008–2010. JAMA. 2015;313(1):37–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Negre-Salvayre A, Salvayre R, Augé N, Pamplona R, Portero-Otín M. Hyperglycemia and glycation in Diabetic Complications. Antioxidants & Redox Signaling. 2009;11(12):3071–109.

Article  CAS  Google Scholar 

Rampin A, Carrabba M, Mutoli M, Eman CL, Testa G, Madeddu P, et al. Recent advances in KEAP1/NRF2-Targeting strategies by Phytochemical Antioxidants, Nanoparticles, and Biocompatible Scaffolds for the treatment of Diabetic Cardiovascular Complications. Antioxid Redox Signal. 2022;36(10–12):707–28.

Article  CAS  PubMed  Google Scholar 

Santopaolo M, Sambataro M, Spinetti G, Madeddu P. Bone marrow as a target and accomplice of vascular complications in diabetes. Diabetes Metab Res Rev. 2020;36 Suppl 1:e3240.

PubMed  Google Scholar 

Wang Y, Shao T, Wang J, Huang X, Deng X, Cao Y, et al. An update on potential biomarkers for diagnosing diabetic foot ulcer at early stage. Biomed Pharmacother. 2021;133:110991.

Article  CAS  PubMed  Google Scholar 

Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137–88.

Article  CAS  PubMed  Google Scholar 

Tresierra-Ayala MÁ, García Rojas A. Association between peripheral arterial disease and diabetic foot ulcers in patients with diabetes mellitus type 2. Medicina Universitaria. 2017;19(76):123–6.

Article  Google Scholar 

Ferraro F, Lymperi S, Mendez-Ferrer S, Saez B, Spencer JA, Yeap BY, et al. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci Transl Med. 2011;3(104):104ra1.

Article  Google Scholar 

Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res. 2019;124(2):315–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 diabetes and its impact on the Immune System. Curr Diabetes Rev. 2020;16(5):442–9.

PubMed  PubMed Central  Google Scholar 

Palano MT, Cucchiara M, Gallazzi M, Riccio F, Mortara L, Gensini GF, et al. When a friend becomes your enemy: natural killer cells in atherosclerosis and Atherosclerosis-Associated Risk factors. Front Immunol. 2021;12:798155.

Article  CAS  PubMed  Google Scholar 

Spinetti G, Sangalli E, Tagliabue E, Maselli D, Colpani O, Ferland-McCollough D, et al. MicroRNA-21/PDCD4 Proapoptotic Signaling from circulating CD34(+) cells to vascular endothelial cells: a potential contributor to adverse Cardiovascular Outcomes in patients with critical limb ischemia. Diabetes Care. 2020;43(7):1520–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pezhman L, Tahrani A, Chimen M. Dysregulation of leukocyte trafficking in type 2 diabetes: mechanisms and potential therapeutic avenues. Front Cell Dev Biol. 2021;9:624184.

Article  PubMed  PubMed Central  Google Scholar 

Jansen F, Li Q, Pfeifer A, Werner N. Endothelial- and Immune Cell-Derived Extracellular vesicles in the regulation of Cardiovascular Health and Disease. JACC Basic Transl Sci. 2017;2(6):790–807.

Article  PubMed  PubMed Central  Google Scholar 

Schober A, Blay RM, Saboor Maleki S, Zahedi F, Winklmaier AE, Kakar MY, et al. MicroRNA-21 controls circadian regulation of apoptosis in atherosclerotic lesions. Circulation. 2021;144(13):1059–73.

Article  CAS  PubMed  Google Scholar 

Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J. 2018;39(29):2704–16.

Article  CAS  PubMed  Google Scholar 

Robinson EL, Baker AH, Brittan M, McCracken I, Condorelli G, Emanueli C, et al. Dissecting the transcriptome in cardiovascular disease. Cardiovasc Res. 2022;118(4):1004–19.

Article  CAS  PubMed  Google Scholar 

Gomes CPC, Schroen B, Kuster GM, Robinson EL, Ford K, Squire IB, et al. Regulatory RNAs in Heart Failure. Circulation. 2020;141(4):313–28.

PubMed  Google Scholar 

Bartel DP. Metazoan MicroRNAs. Cell. 2018;173(1):20–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov. 2012;11(11):860–72.

Article  PubMed  PubMed Central  Google Scholar 

Ni WJ, Leng XM. Dynamic miRNA-mRNA paradigms: new faces of miRNAs. Biochem Biophys Rep. 2015;4:337–41.

PubMed  PubMed Central  Google Scholar 

van der Kwast R, van Ingen E, Parma L, Peters HAB, Quax PHA, Nossent AY. Adenosine-to-inosine editing of MicroRNA-487b alters Target Gene Selection after Ischemia and promotes neovascularization. Circ Res. 2018;122(3):444–56.

Article  PubMed  Google Scholar 

van der Kwast R, Woudenberg T, Quax PHA, Nossent AY. MicroRNA-411 and its 5’-IsomiR have distinct targets and functions and are differentially regulated in the vasculature under Ischemia. Mol Ther. 2020;28(1):157–70.

Article  PubMed  Google Scholar 

Chamorro-Jorganes A, Sweaad WK, Katare R, Besnier M, Anwar M, Beazley-Long N, et al. METTL3 regulates angiogenesis by modulating let-7e-5p and miRNA-18a-5p expression in endothelial cells. Arterioscler Thromb Vasc Biol. 2021;41(6):e325-e37.

Article  Google Scholar 

Iwasaki YW, Siomi MC, Siomi H. PIWI-Interacting RNA: Its Biogenesis and Functions. Annu Rev Biochem. 2015;84:405–33.

Article  CAS  PubMed  Google Scholar 

Scott MS, Ono M. From snoRNA to miRNA: dual function regulatory non-coding RNAs. Biochimie. 2011;93(11):1987–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kiss T. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 2001;20(14):3617–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ingen E, Homberg DAL, Bent ML, Mei H, Papac-Milicevic N, Kremer V, et al. C/D box snoRNA SNORD113-6/AF357425 plays a dual role in integrin signalling and arterial fibroblast function via pre-mRNA processing and 2’O-ribose methylation. Hum Mol Genet. 2021.

Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2 C. Science. 2006;311(5758):230–2.

Article  CAS  PubMed  Google Scholar 

Håkansson KEJ, Goossens EAC, Trompet S, van Ingen E, de Vries MR, van der Kwast R, et al. Genetic associations and regulation of expression indicate an independent role for 14q32 snoRNAs in human cardiovascular disease. Cardiovasc Res. 2019;115(10):1519–32.

Article  PubMed  Google Scholar 

Lee J, Harris AN, Holley CL, Mahadevan J, Pyles KD, Lavagnino Z, et al. Rpl13a small nucleolar RNAs regulate systemic glucose metabolism. J Clin Invest. 2016;126(12):4616–25.

Article  PubMed  PubMed Central  Google Scholar 

Burnett LC, Hubner G, LeDuc CA, Morabito MV, Carli JFM, Leibel RL. Loss of the imprinted, non-coding Snord116 gene cluster in the interval deleted in the Prader Willi syndrome results in murine neuronal and endocrine pancreatic developmental phenotypes. Hum Mol Genet. 2017;26(23):4606–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keam SP, Hutvagner G. tRNA-Derived fragments (tRFs): emerging New Roles for an ancient RNA in the regulation of Gene expression. Life (Basel). 2015;5(4):1638–51.

CAS  PubMed  Google Scholar 

Fu H, Feng J, Liu Q, Sun F, Tie Y, Zhu J, et al. Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett. 2009;583(2):437–42.

Article  CAS  PubMed  Google Scholar 

Su Z, Wilson B, Kumar P, Dutta A. Noncanonical roles of tRNAs: tRNA fragments and Beyond. Annu Rev Genet. 2020;54:47–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magee R, Rigoutsos I. On the expanding roles of tRNA fragments in modulating cell behavior. Nucleic Acids Res. 2020;48(17):9433–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winek K, Lobentanzer S, Nadorp B, Dubnov S, Dames C, Jagdmann S, et al. Transfer RNA fragments replace microRNA regulators of the cholinergic poststroke immune blockade. Proc Nat

留言 (0)

沒有登入
gif