Multifractal detrended fluctuation analysis of insole pressure sensor data to diagnose vestibular system disorders

Khan S, Chang R. Anatomy of the vestibular system: a review. Neurorehabilitation. 2013;32:437–43. https://doi.org/10.3233/NRE-130866.

Article  Google Scholar 

Abdulhay E, Arunkumar N, Narasimhan K, Vellaiappan E, Venkatraman V. Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease. Future Gener Comput Syst. 2018;83:366–73. https://doi.org/10.1016/j.future.2018.02.009.

Article  Google Scholar 

Daliri MR. Automatic diagnosis of neuro-degenerative diseases using gait dynamics. Measurement. 2012;45(7):1729–34. https://doi.org/10.1016/j.measurement.2012.04.013.

Article  Google Scholar 

Sarbaz Y, Banaie M, Pooyan M, Gharibzadeh S, Towhidkhah F, Jafari A. Modeling the gait of normal and Parkinsonian persons for improving the diagnosis. Neurosci Lett. 2012;509(2):72–5. https://doi.org/10.1016/j.neulet.2011.10.002.

Article  Google Scholar 

Zeng W, Wang C. Classification of neurodegenerative diseases using gait dynamics via deterministic learning. Inf Sci. 2015;317:246–58. https://doi.org/10.1016/j.ins.2015.04.047.

Article  Google Scholar 

Imai T, Takeda N, Uno A, Morita M, Koizuka I, Kubo T. Three-dimensional eye rotation axis analysis of benign paroxysmal positioning nystagmus. Orl. 2002;64(6):417–23. https://doi.org/10.1159/000067567.

Article  Google Scholar 

Lang J, Ishikawa K, Hatakeyama K, Wong WH, Yin M, Saito T, Sibata Y. 3D body segment oscillation and gait analysis for vestibular disorders. Auris Nasus Larynx. 2013;40(1):18–24. https://doi.org/10.1016/j.anl.2011.11.007.

Article  Google Scholar 

Bergeron M, Lortie CL, Guitton MJ. Use of virtual reality tools for vestibular disorders rehabilitation: a comprehensive analysis. Adv Med. 2015. https://doi.org/10.1155/2015/916735.

Article  Google Scholar 

Sang-I L, Yi-Ju T, Pei-Yun L. Balance performance when responding to visual stimuli in patients with benign paroxysmal positional vertigo (BPPV). J Vestib Res Equilib Orientat. 2020. https://doi.org/10.3233/VES-200709.

Article  Google Scholar 

Auvinet B, Touzard C, Montestruc F, Elafond A, Goeb V. Gait disorders in the elderly and dual task gait analysis: a new approach for identifying motor phenotypes. J Neuroeng Rehabil. 2017;14:14–7. https://doi.org/10.1186/s12984-017-0218-1.

Article  Google Scholar 

Muro-De-La-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A. Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors. 2014;14(2):3362–94. https://doi.org/10.3390/s140203362.

Article  Google Scholar 

Caldas R, Mundt M, Potthast W, Neto FB, Markert B. A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms. Gait Posture. 2017;57:204–10. https://doi.org/10.1016/j.gaitpost.2017.06.019.

Article  Google Scholar 

Qiu S, Wang H, Li J, Zhao H, Wang Z, Wang J, Ru B. Towards wearable-inertial-sensor-based gait posture evaluation for subjects with unbalanced gaits. Sensors. 2020;20(4):1193. https://doi.org/10.3390/s20041193.

Article  Google Scholar 

Ikizoğlu S, Heydarov S. Accuracy comparison of dimensionality reduction techniques to determine significant features from IMU sensor-based data to diagnose vestibular system disorders. Biomed Signal Process Control. 2020. https://doi.org/10.1016/j.bspc.2020.101963.

Article  Google Scholar 

Jarchi D, Pope J, Lee TK, Tamjidi L, Mirzaei A, Sanei S. A review on accelerometry-based gait analysis and emerging clinical applications. IEEE Rev Biomed Eng. 2018;11:177–94. https://doi.org/10.1109/rbme.2018.2807182.

Article  Google Scholar 

Ricciardi C, Amboni M, Santis CD, Improta G, Volpe G, Iuppariello L, Cesarelli M. Using gait analysis’ parameters to classify Parkinsonism: a data mining approach. Comput Methods Programs in Biomed. 2019;180:4561. https://doi.org/10.1016/j.cmpb.2019.105033.

Article  Google Scholar 

Sama A, Pardo-Ayala DE, Cabestany J, Rodriguez-Molinero A. Time series analysis of inertial-body signals for the extraction of dynamic properties from human gait. In: The 2010 international joint conference on neural networks (IJCNN), 2010, p. 1–5. https://doi.org/10.1109/ijcnn.2010.5596663

Zhao A, Qi L, Dong J, Yu H. Dual channel LSTM based multi-feature extraction in gait for diagnosis of neurodegenerative diseases. Knowl Based Syst. 2018;145:91–7. https://doi.org/10.1016/j.knosys.2018.01.004.

Article  Google Scholar 

Tao W, Liu T, Zheng R, Feng H. Gait analysis using wearable sensors. Sensors. 2012;12(2):2255–83. https://doi.org/10.3390/s120202255.

Article  Google Scholar 

Dutta S, Ghosh D, Chatterjee S. Multifractal detrended fluctuation analysis of human gait diseases. Front Physiol. 2013. https://doi.org/10.3389/fphys.2013.00274.

Article  Google Scholar 

Easwaramoorthy D, Uthayakumar R. Estimating the complexity of biomedical signals by multifractal analysis. In: 2010 IEEE students technology symposium (TechSym) 2010. https://doi.org/10.1109/techsym.2010.5469188

Han C, Wang Y, Xu Y. Efficiency and multifractality analysis of the Chinese stock market: evidence from stock indices before and after the 2015 stock market crash. Sustainability. 2019;11(6):1699. https://doi.org/10.3390/su11061699.

Article  Google Scholar 

Laib M, Golay J, Telesca L, Kanevski M. Multifractal analysis of the time series of daily means of wind speed in complex regions. Chaos Solitons Fractals. 2018;109:118–27. https://doi.org/10.1016/j.chaos.2018.02.024.

Article  Google Scholar 

Lopes R, Betrouni N. Fractal and multifractal analysis: a review. Med Image Anal. 2009;13(4):634–49. https://doi.org/10.1016/j.media.2009.05.003.

Article  Google Scholar 

Peng C, Havlin S, Hausdorff J, Mietus J, Stanley H, Goldberger A. Fractal mechanisms and heart rate dynamics. J Electrocardiol. 1995;28:59–65. https://doi.org/10.1016/s0022-0736(95)80017-4.

Article  Google Scholar 

Phinyomark A, Larracy R, Scheme E. Fractal analysis of human gait variability via stride ınterval time series. Front Physiol. 2020;11:333.

Article  Google Scholar 

Shang P, Lu Y, Kamae S. Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis. Chaos Solitons Fractals. 2008;36(1):82–90. https://doi.org/10.1016/j.chaos.2006.06.019.

Article  Google Scholar 

Zhang X, Zhang G, Qiu L, Zhang B, Sun Y, Gui Z, Zhang Q. A modified multifractal detrended fluctuation analysis (MFDFA) approach for multifractal analysis of precipitation in Dongting Lake Basin China. Water. 2019;11(5):891. https://doi.org/10.3390/w11050891.

Article  Google Scholar 

Hausdorff JM, Ashkenazy Y, Peng C, Ivanov PC, Stanley H, Goldberger AL. When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations. Phys A Stat Mech Appl. 2001;302(1–4):138–47. https://doi.org/10.1016/s0378-4371(01)00460-5.

Article  MATH  Google Scholar 

Muñoz-Diosdado A. Fractal and multifractal analysis of human gait. AIP Conf Proc. 2003. https://doi.org/10.1063/1.1615130.

Article  Google Scholar 

Heydarov S, İkizoğlu S, Şahin K, Kara E, Çakar T, Ataş A. Performance comparison of ML methods applied to motion sensory information for identification of vestibular system disorders. In: ELECO 2017, Bursa, Turkey, 2017

Ikizoğlu S, Atasoy B. Chaotic approach based feature extraction to implement in gait analysis. In: Chaos and complex systems springer proceedings in complexity, 2020, p. 67–72. https://doi.org/10.1007/978-3-030-35441-1_7

Ikizoğlu S, Şahin K, Atas A, Kara E, Çakar T. IMU acceleration drift compensation for position tracking in ambulatory gait analysis. In: Proceedings of the 14th international conference on informatics in control, automation and robotics (ICINCO 2017), p. 582–589. ISBN: 978–989–758–263–9

Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley H. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A Stat Mech Appl. 2002;316(1–4):87–114. https://doi.org/10.1016/s0378-4371(02)01383-3.

Article  MATH  Google Scholar 

Ihlen EA. Introduction to multifractal detrended fluctuation analysis in Matlab. Front Physiol. 2012;3:4561. https://doi.org/10.3389/fphys.2012.00141.

Article  Google Scholar 

Vieten MM, Sehle A, Jensen RL. A novel approach to quantify time series differences of gait data using attractor attributes. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0071824.

Article  Google Scholar 

Healy A, Burgess-Walker P, Naemi R, Chockalingam N. Repeatability of WalkinSense® in shoe pressure measurement system: a preliminary study. Foot. 2012;22(1):35–9. https://doi.org/10.1016/j.foot.2011.11.001.

Article  Google Scholar 

Holleczek T, Ruegg A, Harms H, Tro G. Textile pressure sensors for sports applications. IEEE Sens. 2010;2010:732–7. https://doi.org/10.1109/icsens.2010.5690041.

Article  Google Scholar 

Saito M, Nakajima K, Takano C, Ohta Y, Sugimoto C, Ezoe R, Yamashita K. An in-shoe device to measure plantar pressure during daily human activity. Med Eng Phys. 2011;33(5):638–45. https://doi.org/10.1016/j.medengphy.2011.01.001.

Article  Google Scholar 

Salpavaara T, Verho J, Lekkala J, Halttunen J. Wireless insole sensor system for plantar force measurements during sport events. In: Proceedings of IMEKO XIX world congress on fundamental and applied metrology, Lisbon, Portugal 2009, p. 2118–2123

Shu L, Hua T, Wang Y, Li Q, Feng DD, Tao X. In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Trans Inf Technol Biomed. 2010;14(3):767–75. https://doi.org/10.1109/titb.2009.2038904.

Article  Google Scholar 

Tahir AM, Chowdhury ME, Khandakar A, Al-Hamouz S, Abdalla M, Awadallah S, Al-Emadi N. A systematic approach to the design and characterization of a smart insole for detecting vertical ground reaction force (vGRF) in gait analysis. Sensors. 2020;20(4):957. https://doi.org/10.3390/s20040957.

Article  Google Scholar 

https://cdn2.hubspot.net/hubfs/3899023/Interlinkelectronics%20November2017/Docs/Datasheet_FSR.pdf

Peterson L. K-nearest neighbor. Scholarpedia. 2009;4(2):1883. https://doi.org/10.4249/scholarpedia.1883.

Article  Google Scholar 

James G, Witten D, Hastie T, Tibshirani R. Chapter 8: tree-based methods. In: An introduction to statistical learning with applications in R. New York: Springer; 2017.

MATH  Google Scholar 

Geron A. Chapter 5: support vector machines. In: Hands-on machine learning with Scikit-Learn, Keras, and tensorflow: concepts, tools, and techniques to build intelligent systems. Sebastopol: O’Reilly Media Incorporated; 2019.

Google Scholar 

Bastos ND, Adamatti DF, Billa CZ. Decision tree to analyses EEG signal: a case study using spatial activities. Commun Comput Inf Sci Comput Neurosci. 2017;45:159–69. https://doi.org/10.1007/978-3-319-71011-2_13.

Article  Google Scholar 

Lin Y, Wang C, Wu T, Jeng S, Chen J. Support vector machine for EEG signal classification during listening to emotional music. In: 2008 IEEE 10th workshop on multimedia signal processing, 2008. p. 127–130. https://doi.org/10.1109/mmsp.2008.4665061

Saccà V, Campolo M, Mirarchi D, Gambardella A, Veltri P, Morabito F. On the classification of EEG signal by using an SVM based algorithm. Multidiscip Approaches Neural Comput. 2018. https://doi.org/10.1007/978-3-319-56904-8_26.

Article  Google Scholar 

Saini I, Singh D, Khosla A. QRS detection using K-nearest neighbor algorithm (KNN) and evaluation on standard ECG databases. J Adv Res. 2013;4(4):331–44. https://doi.org/10.1016/j.jare.2012.05.007.

Article  Google Scholar 

Shao M, Bin G, Wu S, Bin G, Huang J, Zhou Z. Detection of atrial fibrillation from ECG recordings using decision tree ensemble with multi-level features. Physiol Meas. 2018. https://doi.org/10.1088/1361-6579/aadf48.

Article  Google Scholar 

Yean CW, Khairunizam W, Omar MI, Murugappan M, Zheng BS, Bakar SA, Ibrahim Z. Analysis of the distance metrics of KNN classifier for EEG signal in stroke patients. In: 2018 International conference on computational approach in smart systems design and applications (ICASSDA) 2018. https://doi.org/10.1109/icassda.2018.8477601

Zhao A, Li J, Dong J, Qi L, Zhang Q, Li N, Wang X, Zhou H. Multimodal gait recognition for neurodegenerative diseases. Comput Sci J Med IEEE Trans Cybern. 2021;52(9):9439–53.

Article  Google Scholar 

Slama AB, Mouelhi A, Sahli H, Zeraii A, Marrakchi J, Trabelsi H. A deep convolutional neural network for automated vestibular disorder classification using VNG analysis. Comput Methods Biomech Biomed Eng Imaging Vis. 2020;8(3):334–42.

Article  Google Scholar 

留言 (0)

沒有登入
gif