Enhancing chemical and physical stability of pharmaceuticals using freeze-thaw method: challenges and opportunities for process optimization through quality by design approach

Chen J, Garcia ES, Zimmerman SC. Intramolecularly cross-linked polymers: from structure to function with applications as artificial antibodies and artificial enzymes. Acc Chem Res. 2020;53:1244–56. https://doi.org/10.1021/acs.accounts.0c00178.

Article  Google Scholar 

Oyama T. Cross-linked polymer synthesis. In: Encyclopedia of polymeric nanomaterials. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 1–11.

Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev. 2012;64:223–36. https://doi.org/10.1016/j.addr.2012.09.009.

Article  Google Scholar 

Souza PR, de Oliveira AC, Vilsinski BH, Kipper MJ, Martins AF. Polysaccharide-based materials created by physical processes: from preparation to biomedical applications. Pharmaceutics. 2021;13:621. https://doi.org/10.3390/pharmaceutics13050621.

Article  Google Scholar 

Morariu S, Bercea M, Gradinaru LM, Rosca I, Avadanei M. Versatile poly(vinyl alcohol)/clay physical hydrogels with tailorable structure as potential candidates for wound healing applications. Mater Sci Eng C. 2020;109:110395. https://doi.org/10.1016/j.msec.2019.110395.

Article  Google Scholar 

Bi S, Bao Z, Bai X, Hu S, Cheng X, Chen X. Tough chitosan hydrogel based on purified regeneration and alkaline solvent as biomaterials for tissue engineering applications. Int J Biol Macromol. 2017;104:224–31. https://doi.org/10.1016/j.ijbiomac.2017.06.017.

Article  Google Scholar 

Feldman D. Poly(vinyl alcohol) recent contributions to engineering and medicine. J Compos Sci. 2020;4:175. https://doi.org/10.3390/jcs4040175.

Article  Google Scholar 

Peppas NA. Turbidimetric studies of aqueous poly(vinyl alcohol) solutions. Die Makromolekulare Chemie. 1975;176:3433–40. https://doi.org/10.1002/MACP.1975.021761125.

Article  Google Scholar 

Peppas NA. Infrared spectroscopy of semicrystalline poly(vinyl alcohol) networks. Die Makromolekulare Chemie. 1977;178:595–601. https://doi.org/10.1002/MACP.1977.021780228.

Article  Google Scholar 

Hassan CM, Peppas NA. Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing / thawing methods. Adv Polym Sci. 2000;153:37–65.

Article  Google Scholar 

Wu K, Han H, Xu L, Gao Y, Yang Z, Jiang Z, De Schutter G. The improvement of freezing-thawing resistance of concrete by cellulose/polyvinyl alcohol hydrogel. Constr Build Mater. 2021;291:123274. https://doi.org/10.1016/J.CONBUILDMAT.2021.123274.

Article  Google Scholar 

Yi Y, Chiao M, Mahmoud KA, Wu L, Wang B. Preparation and characterization of PVA/PVP conductive hydrogels formed by freeze-thaw processes as a promising material for sensor applications. J Mater Sci. 2022;57:8029–38. https://doi.org/10.1007/S10853-022-07179-8.

Article  Google Scholar 

Skopinska-Wisniewska J, Tuszynska M, Olewnik-Kruszkowska E. Comparative study of gelatin hydrogels modified by various cross-linking agents. Materials. 2021;14:396. https://doi.org/10.3390/ma14020396.

Article  Google Scholar 

Ban Z, Horev B, Rutenberg R, Danay O, Bilbao C, McHugh T, Rodov V, Poverenov E. Efficient production of fungal chitosan utilizing an advanced freeze-thawing method; quality and activity studies. Food Hydrocoll. 2018;81:380–8. https://doi.org/10.1016/j.foodhyd.2018.03.010.

Article  Google Scholar 

Holloway JL, Lowman AM, Palmese GR. The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter. 2013;9:826–33. https://doi.org/10.1039/C2SM26763B.

Article  Google Scholar 

Yu J, Wang Y, Li D, Wang L. Freeze-thaw stability and rheological properties of soy protein isolate emulsion gels induced by NaCl. Food Hydrocoll. 2022;123:107113. https://doi.org/10.1016/j.foodhyd.2021.107113.

Article  Google Scholar 

Hatakeyema T, Uno J, Yamada C, Kishi A, Hatakeyama H. Gel-sol transition of poly(vinyl alcohol) hydrogels formed by freezing and thawing. Thermochim Acta. 2005;431:144–8. https://doi.org/10.1016/j.tca.2005.01.062.

Article  Google Scholar 

Tripathi A, Parsons GN, Khan SA, Rojas OJ. Synthesis of organic aerogels with tailorable morphology and strength by controlled solvent swelling following Hansen solubility. Sci Rep. 2018;8:2106. https://doi.org/10.1038/s41598-018-19720-4.

Article  Google Scholar 

Park E, Ryu JH, Lee D, Lee H. Freeze–thawing-induced macroporous catechol hydrogels with shape recovery and sponge-like properties. ACS Biomater Sci Eng. 2021;7:4318–29. https://doi.org/10.1021/acsbiomaterials.0c01767.

Article  Google Scholar 

Ricciardi R, Auriemma F, Gaillet C, De Rosa C, Lauprêtre F. Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques. Macromolecules. 2004;37:9510–6. https://doi.org/10.1021/ma048418v.

Article  Google Scholar 

Lewis L, Hatzikiriakos SG, Hamad WY, MacLachlan MJ. Freeze-thaw gelation of cellulose nanocrystals. ACS Macro Lett. 2019;8:486–91. https://doi.org/10.1021/acsmacrolett.9b00140.

Article  Google Scholar 

Degner BM, Chung C, Schlegel V, Hutkins R, McClements DJ. Factors influencing the freeze-thaw stability of emulsion-based foods. Compr Rev Food Sci Food Saf. 2014;13:98–113. https://doi.org/10.1111/1541-4337.12050.

Article  Google Scholar 

Zaritzky N. Physical–chemical principles in freezing. In: Handbook of frozen food processing and packaging. 2005. p. 4–34.

Adams G. The principles of freeze-drying. 2007. p. 15–38.

Welti-Chanes J, Bermúdez D, Valdez-Fragoso A, Mújica-Paz H, Alzamora SM. Principles and applications of freeze-concentration and freeze-drying. In: Handbook of food science, technology, and engineering - 4 volume set. 2005. p. 2016–2024.

Reid DS. Overview of physical/chemical aspects of freezing. In: Quality in frozen food. Boston: Springer US; 1997. p. 10–28.

Cheftel JC, Lévy J, Dumay E. Pressure-assisted freezing and thawing: principles and potential applications. Food Rev Intl. 2000;16:453–83. https://doi.org/10.1081/FRI-100102319.

Article  Google Scholar 

Nakagawa K, Maebashi S, Maeda K. Freeze-thawing as a path to concentrate aqueous solution. Sep Purif Technol. 2010;73:403–8. https://doi.org/10.1016/j.seppur.2010.04.031.

Article  Google Scholar 

Zhang H, Zhang F, Wu J. Physically crosslinked hydrogels from polysaccharides prepared by freeze-thaw technique. React Funct Polym. 2013;73:923–8. https://doi.org/10.1016/j.reactfunctpolym.2012.12.014.

Article  Google Scholar 

Adelnia H, Ensandoost R, Shebbrin Moonshi S, Gavgani JN, Vasafi EI, Ta HT. Freeze/thawed polyvinyl alcohol hydrogels: present, past and future. Eur Polym J. 2022;164:1–26. https://doi.org/10.1016/j.eurpolymj.2021.110974.

Article  Google Scholar 

Shams Es-haghi S, Mayfield MB, Weiss RA. Effect of freeze/thaw process on mechanical behavior of double-network hydrogels in finite tensile deformation. Macromolecules. 2018;51:1052–7. https://doi.org/10.1021/acs.macromol.7b02418.

Article  Google Scholar 

Tan M, Mei J, Xie J. The formation and control of ice crystal and its impact on the quality of frozen aquatic products: a review. Crystals (Basel). 2021;11:68. https://doi.org/10.3390/cryst11010068.

Article  Google Scholar 

Pham QT, Mawson RF. Moisture migration and ice recrystallization in frozen foods. In: Quality in frozen food. Boston: Springer US; 1997. p. 67–91. ISBN 1461559758.

Figueroa-Pizano MD, Vélaz I, Peñas FJ, Zavala-Rivera P, Rosas-Durazo AJ, Maldonado-Arce AD, Martínez-Barbosa ME. Effect of freeze-thawing conditions for preparation of chitosan-poly (vinyl alcohol) hydrogels and drug release studies. Carbohydr Polym. 2018;195:476–85. https://doi.org/10.1016/j.carbpol.2018.05.004.

Article  Google Scholar 

Zhu H, Ma Q, Sheng J, Yang R. Freeze-thaw repetition as an auxiliary method to promote efficient separation of hemicellulose from poplar. Green Chem. 2020;22:942–9. https://doi.org/10.1039/C9GC03792F.

Article  Google Scholar 

Williams PD, Sadar LN, Martin Lo Y. Texture stability of hydrogel complex containing curdlam gum over multiple freeze-thaw cycles. J Food Process Preserv. 2009;33:126–39. https://doi.org/10.1111/j.1745-4549.2009.00364.x.

Article  Google Scholar 

Gwon Y, Kim W, Park S, Hong S, Kim J. A freezing and thawing method for fabrication of small gelatin nanoparticles with stable size distributions for biomedical applications. Tissue Eng Regen Med. 2022;19:301–7. https://doi.org/10.1007/s13770-021-00380-x.

Article  Google Scholar 

Lai H, Zhan F, Wei Y, Zongo AWS, Jiang S, Sui H, Li B, Li J. Influence of particle size and ionic strength on the freeze-thaw stability of emulsions stabilized by whey protein isolate. Food Sci Human Wellness. 2022;11:922–32. https://doi.org/10.1016/j.fshw.2022.03.018.

Article  Google Scholar 

Yang M, Wang Z, Li M, Yin Z, Butt HA. The synthesis, mechanisms, and additives for bio-compatible polyvinyl alcohol hydrogels: a review on current advances, trends, and future outlook. J Vinyl Add Tech. 2022. https://doi.org/10.1002/vnl.21962.

Article  Google Scholar 

Ahmadi S, Ghasemzadeh H, Changizi F. Effects of a low-carbon emission additive on mechanical properties of fine-grained soil under freeze-thaw cycles. J Clean Prod. 2021;304:127157. https://doi.org/10.1016/j.jclepro.2021.127157.

Article  Google Scholar 

Zhu Y, McClements DJ, Zhou W, Peng S, Zhou L, Zou L, Liu W. Influence of ionic strength and thermal pretreatment on the freeze-thaw stability of pickering emulsion gels. Food Chem. 2020;303:125401. https://doi.org/10.1016/j.foodchem.2019.125401.

Article  Google Scholar 

Khan BA, Akhtar N, Khan HMS, Waseem K, Mahmood T, Rasul A, Iqbal M, Khan H. Basics of pharmaceutical emulsions: a review. Afr J Pharm Pharmacol. 2011;5:2715–25.

Google Scholar 

Ghosh S, Coupland JN. Factors affecting the freeze-thaw stability of emulsions. Food Hydrocoll. 2008;22:105–11.

Article  Google Scholar 

Navarro-Pérez YM, Cedeño-Linares E, Norman-Montenegro O, Ruz-Sanjuan V, Mondeja-Rivera Y, Hernández-Monzón AM, González-Bedia MM. Prediction of the physical stability and quality of O/W cosmetic emulsions using full factorial design. J Pharm Pharmacogn Res. 2021;9:98–112.

Article  Google Scholar 

Wang Y, Wang C, Deng Y, Song Y. A new application of monosialotetrahexosylganglioside in pharmaceutics: preparation of freeze-thaw-resistant coenzyme q10 emulsions. Eur J Pharm Sci. 2021;159:105701.

Article  Google Scholar 

Buzzo CMVC, Converti A, da Silva JA, Apolinário AC. Quality by design enabled the development of stable and effective oil-in-water emulsions at compounding pharmacy: the case of a sunscreen formulation. Pharm Dev Technol. 2021;26:1090–101.

Article  Google Scholar 

Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58:1688–713.

Article  Google Scholar 

Steffens Reinhardt L, Chee BS, Cao Z, Jaqueline Moura D, Nugent M. Freeze-thaw electrospun PVA-dacarbazine nanoparticles: preparation, characterization and anticancer evaluation. Int J Polym Mater Polym Biomater. 2020;69:749–60.

Article  Google Scholar 

Trenkenschuh E, Friess W. Freeze-drying of nanoparticles: how to overcome colloidal instability by formulation and process optimization. Eur J Pharm Biopharm. 2021;165:345–60.

Article  Google Scholar 

O’Sullivan A, Ryan KM, Padrela L. Production of biopharmaceutical dried-powders using supercritical CO2 technology. J Supercrit Fluids. 2022:187:105645.

Gwon Y, Kim W, Park S, Hong S, Kim J. A freezing and thawing method for fabrication of small gelatin nanoparticles with stable size distributions for biomedical applications. Tissue Eng Regen Med. 2021:19:301–7.

Peppas NA, Stauffer SR. Reinforced uncrosslinked poly (vinyl alcohol) gels produced by cyclic freezing-thawing processes: a short review. J Control Release. 1991;16:305–10. https://doi.org/10.1016/0168-3659(91)90007-Z.

Article  Google Scholar 

Li JK, Wang N, Wu XS. Poly(vinyl alcohol) nanoparticles prepared by freezing-thawing process for protein/peptide drug delivery. J Control Release. 1998;56:117–26. https://doi.org/10.1016/S0168-3659(98)00089-3.

Article  Google Scholar 

Weber D, Hubbuch J. Temperature based process characterization of pharmaceutical freeze-thaw operations. Front Bioeng Biotechnol. 2021;9:617770.

留言 (0)

沒有登入
gif