Structural basis for pre-tRNA recognition and processing by the human tRNA splicing endonuclease complex

Hopper, A. K. & Nostramo, R. T. tRNA processing and subcellular trafficking proteins multitask in pathways for other RNAs. Front. Genet. 10, 96 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmidt, C. A. & Matera, A. G. tRNA introns: presence, processing, and purpose. Wiley Interdiscip. Rev. RNA 11, e1583 (2020).

Article  CAS  PubMed  Google Scholar 

Gogakos, T. et al. Characterizing expression and processing of precursor and mature human tRNAs by hydro-tRNAseq and PAR-CLIP. Cell Rep. 20, 1463–1475 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan, P. P. & Lowe, T. M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184–D189 (2016).

Article  CAS  PubMed  Google Scholar 

Hayne, C. K., Lewis, T. A. & Stanley, R. E. Recent insights into the structure, function, and regulation of the eukaryotic transfer RNA splicing endonuclease complex. Wiley Interdiscip. Rev. RNA 13, e1717 (2022).

Article  CAS  PubMed  Google Scholar 

Sekulovski, S. & Trowitzsch, S. Transfer RNA processing - from a structural and disease perspective. Biol. Chem. 403, 749–763 (2022).

Article  CAS  PubMed  Google Scholar 

Trotta, C. R. et al. The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases. Cell 89, 849–858 (1997).

Article  CAS  PubMed  Google Scholar 

Paushkin, S. V., Patel, M., Furia, B. S., Peltz, S. W. & Trotta, C. R. Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3′ end formation. Cell 117, 311–321 (2004).

Article  CAS  PubMed  Google Scholar 

Xue, S., Calvin, K. & Li, H. RNA recognition and cleavage by a splicing endonuclease. Science 312, 906–910 (2006).

Article  CAS  PubMed  Google Scholar 

Reyes, V. M. & Abelson, J. Substrate recognition and splice site determination in yeast tRNA splicing. Cell 55, 719–730 (1988).

Article  CAS  PubMed  Google Scholar 

Greer, C. L., Soll, D. & Willis, I. Substrate recognition and identification of splice sites by the tRNA-splicing endonuclease and ligase from Saccharomyces cerevisiae. Mol. Cell. Biol. 7, 76–84 (1987).

CAS  PubMed  PubMed Central  Google Scholar 

Song, J. & Markley, J. L. Three-dimensional structure determined for a subunit of human tRNA splicing endonuclease (Sen15) reveals a novel dimeric fold. J. Mol. Biol. 366, 155–164 (2007).

Article  CAS  PubMed  Google Scholar 

Sekulovski, S. et al. Assembly defects of human tRNA splicing endonuclease contribute to impaired pre-tRNA processing in pontocerebellar hypoplasia. Nat. Commun. 12, 5610 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirata, A. Recent Insights Into the structure, function, and evolution of the RNA-splicing endonucleases. Front. Genet. 10, 103 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshihisa, T. Handling tRNA introns, archaeal way and eukaryotic way. Front. Genet. 5, 213 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Calvin, K. & Li, H. RNA-splicing endonuclease structure and function. Cell. Mol. Life Sci. 65, 1176–1185 (2008).

Article  CAS  PubMed  Google Scholar 

Weitzer, S., Hanada, T., Penninger, J. M. & Martinez, J. CLP1 as a novel player in linking tRNA splicing to neurodegenerative disorders. Wiley Interdiscip. Rev. RNA 6, 47–63 (2015).

Article  CAS  PubMed  Google Scholar 

Hayne, C. K., Schmidt, C. A., Haque, M. I., Matera, A. G. & Stanley, R. E. Reconstitution of the human tRNA splicing endonuclease complex: insight into the regulation of pre-tRNA cleavage. Nucleic Acids Res. 48, 7609–7622 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pacheva, I. H. et al. TSEN54 gene-related pontocerebellar hypoplasia type 2 could mimic dyskinetic cerebral palsy with severe psychomotor retardation. Front. Pediatr. 6, 1 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Schaffer, A. E. et al. CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell 157, 651–663 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qian, Y. et al. A familial late-onset hereditary ataxia mimicking pontocerebellar hypoplasia caused by a novel TSEN54 mutation. Mol. Med. Rep. 10, 1423–1425 (2014).

Article  CAS  PubMed  Google Scholar 

Karaca, E. et al. Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell 157, 636–650 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laugwitz, L. et al. Pontocerebellar hypoplasia type 11: Does the genetic defect determine timing of cerebellar pathology? Eur. J. Med. Genet. 63, 103938 (2020).

Article  PubMed  Google Scholar 

Monaghan, C. E., Adamson, S. I., Kapur, M., Chuang, J. H. & Ackerman, S. L. The Clp1 R140H mutation alters tRNA metabolism and mRNA 3′ processing in mouse models of pontocerebellar hypoplasia. Proc. Natl Acad. Sci. USA 118, e2110730118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

LaForce, G. R. et al. Suppression of premature transcription termination leads to reduced mRNA isoform diversity and neurodegeneration. Neuron 110, 1340–1357.e1347 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Forconi, M. et al. 2′-Fluoro substituents can mimic native 2′-hydroxyls within structured RNA. Chem. Biol. 18, 949–954 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, H., Trotta, C. R. & Abelson, J. Crystal structure and evolution of a transfer RNA splicing enzyme. Science 280, 279–284 (1998).

Article  CAS  PubMed  Google Scholar 

Abelson, J., Trotta, C. R. & Li, H. tRNA splicing. J. Biol. Chem. 273, 12685–12688 (1998).

Article  CAS  PubMed  Google Scholar 

Swerdlow, H. & Guthrie, C. Structure of intron-containing tRNA precursors. Analysis of solution conformation using chemical and enzymatic probes. J. Biol. Chem. 259, 5197–5207 (1984).

Article  CAS  PubMed  Google Scholar 

Schmidt, C. A., Giusto, J. D., Bao, A., Hopper, A. K. & Matera, A. G. Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Res. 47, 6452–6465 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tocchini-Valentini, G. D., Fruscoloni, P. & Tocchini-Valentini, G. P. Evolution of introns in the archaeal world. Proc. Natl Acad. Sci. USA 108, 4782–4787 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mattoccia, E., Baldi, I. M., Gandini-Attardi, D., Ciafre, S. & Tocchini-Valentini, G. P. Site selection by the tRNA splicing endonuclease of Xenopus laevis. Cell 55, 731–738 (1988).

Article  CAS  PubMed  Google Scholar 

Fabbri, S. Conservation of substrate recognition mechanisms by tRNA splicing endonucleases. Science 280, 284–286 (1998).

Article  CAS  PubMed  Google Scholar 

Fruscoloni, P., Baldi, M. I. & Tocchini-Valentini, G. P. Cleavage of non-tRNA substrates by eukaryal tRNA splicing endonucleases. EMBO Rep. 2, 217–221 (2001).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif