Structural basis of substrate recognition by human tRNA splicing endonuclease TSEN

Schimmel, P. The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis. Nat. Rev. Mol. Cell Biol. 19, 45–58 (2018).

Article  CAS  PubMed  Google Scholar 

Chan, P. P. & Lowe, T. M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184–D189 (2016).

Article  CAS  PubMed  Google Scholar 

Paushkin, S. V., Patel, M., Furia, B. S., Peltz, S. W. & Trotta, C. R. Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3′ end formation. Cell 117, 311–321 (2004).

Article  CAS  PubMed  Google Scholar 

Popow, J. et al. HSPC117 is the essential subunit of a human tRNA splicing ligase complex. Science 331, 760–764 (2011).

Article  CAS  PubMed  Google Scholar 

Rauhut, R., Green, P. R. & Abelson, J. Yeast tRNA-splicing endonuclease is a heterotrimeric enzyme. J. Biol. Chem. 265, 18180–18184 (1990).

Article  CAS  PubMed  Google Scholar 

Song, J. & Markley, J. L. Three-dimensional structure determined for a subunit of human tRNA splicing endonuclease (Sen15) reveals a novel dimeric fold. J. Mol. Biol. 366, 155–164 (2007).

Article  CAS  PubMed  Google Scholar 

Sekulovski, S. et al. Assembly defects of human tRNA splicing endonuclease contribute to impaired pre-tRNA processing in pontocerebellar hypoplasia. Nat. Commun. 12, 5610 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tocchini-Valentini, G. D., Fruscoloni, P. & Tocchini-Valentini, G. P. Structure, function, and evolution of the tRNA endonucleases of Archaea: an example of subfunctionalization. Proc. Natl Acad. Sci. USA 102, 8933–8938 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirata, A. et al. X-ray structure of the fourth type of archaeal tRNA splicing endonuclease: insights into the evolution of a novel three-unit composition and a unique loop involved in broad substrate specificity. Nucleic Acids Res. 40, 10554–10566 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trotta, C. R. et al. The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases. Cell 89, 849–858 (1997).

Article  CAS  PubMed  Google Scholar 

Li, H., Trotta, C. R. & Abelson, J. Crystal structure and evolution of a transfer RNA splicing enzyme. Science 280, 279–284 (1998).

Article  CAS  PubMed  Google Scholar 

Hayne, C. K., Schmidt, C. A., Haque, M. I., Matera, A. G. & Stanley, R. E. Reconstitution of the human tRNA splicing endonuclease complex: insight into the regulation of pre-tRNA cleavage. Nucleic Acids Res. 48, 7609–762 (2020).

Lee, M. C. & Knapp, G. Transfer RNA splicing in Saccharomyces cerevisiae. Secondary and tertiary structures of the substrates. J. Biol. Chem. 260, 3108–3115 (1985).

Article  CAS  PubMed  Google Scholar 

Swerdlow, H. & Guthrie, C. Structure of intron-containing tRNA precursors. Analysis of solution conformation using chemical and enzymatic probes. J. Biol. Chem. 259, 5197–5207 (1984).

Article  CAS  PubMed  Google Scholar 

Thompson, L. D. & Daniels, C. J. Recognition of exon-intron boundaries by the Halobacterium volcanii tRNA intron endonuclease. J. Biol. Chem. 265, 18104–18111 (1990).

Article  CAS  PubMed  Google Scholar 

Reyes, V. M. & Abelson, J. Substrate recognition and splice site determination in yeast tRNA splicing. Cell 55, 719–730 (1988).

Article  CAS  PubMed  Google Scholar 

Greer, C. L., Söll, D. & Willis, I. Substrate recognition and identification of splice sites by the tRNA-splicing endonuclease and ligase from Saccharomyces cerevisiae. Mol. Cell. Biol. 7, 76–84 (1987).

CAS  PubMed  PubMed Central  Google Scholar 

Baldi, M. I., Mattoccia, E., Bufardeci, E., Fabbri, S. & Tocchini-Valentini, G. P. Participation of the intron in the reaction catalyzed by the Xenopus tRNA splicing endonuclease. Science 255, 1404–1408 (1992).

Article  CAS  PubMed  Google Scholar 

Di Nicola Negri, E. et al. The eucaryal tRNA splicing endonuclease recognizes a tripartite set of RNA elements. Cell 89, 859–866 (1997).

Article  PubMed  Google Scholar 

Schmidt, C. A., Giusto, J. D., Bao, A., Hopper, A. K. & Matera, A. G. Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Res. 47, 6452–6465 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue, S., Calvin, K. & Li, H. RNA recognition and cleavage by a splicing endonuclease. Science 312, 906–910 (2006).

Article  CAS  PubMed  Google Scholar 

Trotta, C. R., Paushkin, S. V., Patel, M., Li, H. & Peltz, S. W. Cleavage of pre-tRNAs by the splicing endonuclease requires a composite active site. Nature 441, 375–377 (2006).

Article  CAS  PubMed  Google Scholar 

Weitzer, S. & Martinez, J. The human RNA kinase hClp1 is active on 3′ transfer RNA exons and short interfering RNAs. Nature 447, 222–226 (2007).

Article  CAS  PubMed  Google Scholar 

Hanada, T. et al. CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature 495, 474–480 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karaca, E. et al. Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell 157, 636–650 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schaffer, A. E. et al. CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell 157, 651–663 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Monaghan, C. E., Adamson, S. I., Kapur, M., Chuang, J. H. & Ackerman, S. L. The Clp1 R140H mutation alters tRNA metabolism and mRNA 3′ processing in mouse models of pontocerebellar hypoplasia. Proc. Natl Acad. Sci. USA 118, e2110730118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmidt, C. A. et al. Mutations in Drosophila tRNA processing factors cause phenotypes similar to pontocerebellar hypoplasia. Biol. Open 11, bio058928 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Dijk, T., Baas, F., Barth, P. G. & Poll-The, B. T. What’s new in pontocerebellar hypoplasia? An update on genes and subtypes. Orphanet J. Rare Dis. 13, 92 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Weitzer, S., Hanada, T., Penninger, J. M. & Martinez, J. CLP1 as a novel player in linking tRNA splicing to neurodegenerative disorders. Wiley Interdiscip. Rev. RNA 6, 47–63 (2015).

Article  CAS  PubMed  Google Scholar 

Schmidt, C. A. & Matera, A. G. tRNA introns: presence, processing, and purpose. Wiley Interdiscip. Rev. RNA 11, e1583 (2020).

Article  CAS  PubMed  Google Scholar 

Gogakos, T. et al. Characterizing expression and processing of precursor and mature human tRNAs by hydro-tRNAseq and PAR-CLIP. Cell Rep. 20, 1463–1475 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Byrne, R. T., Konevega, A. L., Rodnina, M. V. & Antson, A. A. The crystal structure of unmodified tRNAPhe from Escherichia coli. Nucleic Acids Res. 38, 4154–4162 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bufardeci, E., Fabbri, S., Baldi, M. I., Mattoccia, E. & Tocchini-Valentini, G. P. In vitro genetic analysis of the structural features of the pre-tRNA required for determination of the 3′ splice site in the intron excision reaction. EMBO J. 12, 4697–4704 (1993).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belfort, M. & Weiner, A. Another bridge between kingdoms: tRNA splicing in archaea and eukaryotes. Cell 89, 1003–1006 (1997).

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif