Loop dynamics and the evolution of enzyme activity

James, L. C. & Tawfik, D. S. Conformational diversity and protein evolution — a 60-year-old hypothesis revisited. Trends Biochem. Sci. 28, P361–P368 (2003).

Article  Google Scholar 

Tokuriki, N. & Tawfik, D. S. Protein dynamism and evolvability. Science 324, 203–207 (2009).

Article  CAS  PubMed  Google Scholar 

Damry, A. M. & Jackson, C. J. The evolution and engineering of enzyme activity through tuning conformational landscapes. Prot. Eng. Des. Sel. 34, gzab009 (2021).

Article  Google Scholar 

Campbell, E. C. et al. Laboratory evolution of protein conformational dynamics. Curr. Opin. Struct. Biol. 50, 49–57 (2018).

Article  CAS  PubMed  Google Scholar 

Maria-Solano, M. A., Serrano-Hervás, E., Romero-Rivera, A., Iglesias-Fernández, J. & Osuna, S. Role of conformational dynamics in the evolution of novel enzyme function. Chem. Commun. 54, 6622–6634 (2018).

Article  CAS  Google Scholar 

Crean, R. M., Gardner, J. M. & Kamerlin, S. C. L. Harnessing conformational plasticity to generate designer enzymes. J. Am. Chem. Soc. 142, 11324–11342 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pinto, G. P., Corbella, M., Demkiv, A. O. & Kamerlin, S. C. L. Exploiting enzyme evolution for computational protein design. Trends Biochem. Sci. 47, 375–389 (2021).

Article  PubMed  Google Scholar 

Brown, F. K. & Kollman, P. A. Molecular dynamics simulations of “loop closing” in the enzyme triose phosphate isomerase. J. Mol. Biol. 198, 533–546 (1987).

Article  CAS  PubMed  Google Scholar 

Joseph, D., Petsko, G. & Karplus, M. Anatomy of a conformational change: hinged “lid” motion of the triosephosphate isomerase loop. Science 249, 1425–1428 (1990).

Article  CAS  PubMed  Google Scholar 

Williams, J. C. & McDermott, A. E. Dynamics of the flexible loop of triose-phosphate isomerase: the loop motion is not ligand gated. Biochemistry 34, 8309–8319 (1995).

Article  CAS  PubMed  Google Scholar 

Rozovsky, S., Jogl, G., Tong, L. & McDermott, A. E. Solution-state NMR investigations of triosephosphate isomerase active site loop motion: ligand release in relation to active site loop dynamics. J. Mol. Biol. 310, 271–280 (2001).

Article  CAS  PubMed  Google Scholar 

Wierenga, R. K., Kapetaniou, E. G. & Venkatesan, R. Triosephosphate isomerase: a highly evolved biocatalyst. Cell. Mol. Life Sci. 67, 3961–3982 (2010).

Article  CAS  PubMed  Google Scholar 

Papaleo, E. et al. The role of protein loops and linkers in conformational dynamics and allostery. Chem. Rev. 116, 6391–6423 (2016).

Article  CAS  PubMed  Google Scholar 

Näsvall, J., Sun, L., Roth, J. R. & Andersson, D. I. Real-time evolution of new genes by innovation, amplification and divergence. Science 338, 384–387 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Newton, W. S. et al. Structural and functional innovations in the real-time evolution of new (βα)8 barrel enzymes. Proc. Natl Acad. Sci. USA 114, 4727–4732 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romero-Rivera, A., Corbella, M., Parracino, A., Patrick, W. M. & Kamerlin, S. C. L. Complex loop dynamics underpin activity, specificity and evolvability in the (βα)8 barrel enzymes of histidine and tryptophan biosynthesis. JACS Au 4, 943–960 (2022).

Article  Google Scholar 

Crean, R. M., Biler, M., van der Kamp, M. W., Hengge, A. C. & Kamerlin, S. C. L. Loop dynamics and enzyme catalysis in protein tyrosine phosphatases. J. Am. Chem. Soc. 143, 3830–3845 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moise, G. et al. A YopH PTP1B chimera shows the importance of the WPD-loop sequence to the activity, structure and dynamics of protein tyrosine phosphatases. Biochemistry 57, 5315–5326 (2018).

Article  CAS  PubMed  Google Scholar 

Whittier, S. K., Hengge, A. C. & Loria, J. P. Conformational motions regulate phosphoryl transfer in related protein tyrosine phosphatases. Science 341, 899–903 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen, R., Crean, R. M., Johnson, S. J., Kamerlin, S. C. L. & Hengge, A. C. Single residue on the WPD-loop affects the pH dependency of catalysis in protein tyrosine phosphatases. JACS Au 5, 646–659 (2021).

Article  Google Scholar 

Liu, J., Tan, H. & Rost, B. Loopy proteins appear conserved in evolution. J. Mol. Biol. 322, 53–64 (2002).

Article  CAS  PubMed  Google Scholar 

Gunasekaran, K., Ma, B. & Nussinov, R. Triggering loops and enzyme function: identification of loops that trigger and modulate movements. J. Mol. Biol. 332, 143–159 (2003).

Article  CAS  PubMed  Google Scholar 

Richard, J. P., Zhai, X. & Malabanan, M. M. Reflections on the catalytic power of a TIM-barrel. Bioorg. Chem. 57, 206–212 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richard, J. P. A paradigm for enzyme-catalyzed proton transfer at carbon: triosephosphate isomerase. Biochemistry 51, 2652–2661 (2012).

Article  CAS  PubMed  Google Scholar 

Richard, J. P. Protein flexibility and stiffness enable efficient enzymatic catalysis. J. Am. Chem. Soc. 141, 3320–3331 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richard, J. P., Amyes, T. L. & Reyes, A. C. Orotidine 5′-monophosphate decarboxylase: probing the limits of the possible for enzyme catalysis. Acc. Chem. Res. 51, 960–969 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, R., Reyes, A. C., Amyes, T. L. & Richard, J. P. Enzyme architecture: the role of a flexible loop in activation of glycerol-3-phosphate dehydrogenase for catalysis of hydride transfer. Biochemistry 57, 3227–3236 (2018).

Article  CAS  PubMed  Google Scholar 

Mhashal, A. R. et al. Modeling the role of a flexible loop and active site side chains in hydride transfer catalyzed by glycerol-3-phosphate dehydrogenase. ACS Catal. 19, 11253–11267 (2020).

Article  Google Scholar 

Ray, W. J., Long, J. W. & Owens, J. D. An analysis of the substrate-induced rate effect in the phosphoglutomuase system. Biochemistry 15, 4006–4017 (1976).

Article  CAS  PubMed  Google Scholar 

Seelig, B. & Szostak, J. W. Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448, 828–831 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaur, G. & Subramanian, S. Repurposing TRASH: emergence of the enzyme organomercurial lyase from a non-catalytic zinc finger scaffold. J. Struct. Biol. 188, 16–21 (2014).

Article  CAS  PubMed  Google Scholar 

Ortmayer, M. et al. An oxidative N-demethylase reveals PAS transition from ubiquitous sensor to enzyme. Nature 539, 593–597 (2016).

Article  CAS  PubMed  Google Scholar 

Clifton, B. E. et al. Evolution of cyclohexadienyl dehydratase from an ancestral solute-binding protein. Nat. Chem. Biol. 14, 542–547 (2018).

Article  CAS  PubMed  Google Scholar 

Risso, V. A. et al. De novo active sites for resurrected Precambrian enzymes. Nat. Commun. 8, 16113 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaltenbach, M. et al. Evolution of chalcone isomerase from a noncatalytic ancestor. Nat. Chem. Biol. 14, 548–555 (2018).

Article  CAS  PubMed  Google Scholar 

Hedstrom, L., Szilagyi, L. & Rutter, W. J. Converting trypsin to chymotrypsin: the role of surface loops. Science 255, 1249–1253 (1992).

Article  CAS  PubMed  Google Scholar 

Park, H.-S. et al. Design and evolution of new catalytic activity with an existing protein scaffold. Science 311, 535–538 (2006).

Article  CAS  PubMed  Google Scholar 

Tawfik, D. S. Loop grafting and the origins of enzyme species. Science 311, 475–576 (2006).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif