Flow-induced reprogramming of endothelial cells in atherosclerosis

Libby, P., Ridker, P. M. & Maseri, A. Inflammation and atherosclerosis. Circulation 105, 1135–1143 (2002).

Article  CAS  PubMed  Google Scholar 

Herrington, W., Lacey, B., Sherliker, P., Armitage, J. & Lewington, S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ. Res. 118, 535–546 (2016).

Article  CAS  PubMed  Google Scholar 

Davignon, J. & Ganz, P. Role of endothelial dysfunction in atherosclerosis. Circulation 109, III27–III32 (2004).

Article  PubMed  Google Scholar 

Bennett, M. R., Sinha, S. & Owens, G. K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 118, 692–702 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

Article  CAS  PubMed  Google Scholar 

Libby, P., Ridker, P. M., Hansson, G. K. & Atherothrombosis, L. T. N. O. Inflammation in atherosclerosis: from pathophysiology to practice. J. Am. Coll. Cardiol. 54, 2129–2138 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caro, C. G., Fitz-Gerald, J. M. & Schroter, R. C. Arterial wall shear and distribution of early atheroma in man. Nature 223, 1159–1160 (1969).

Article  CAS  PubMed  Google Scholar 

VanderLaan, P. A., Reardon, C. A. & Getz, G. S. Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler Thromb. Vasc. Biol. 24, 12–22 (2004).

Article  CAS  PubMed  Google Scholar 

Tarbell, J. M. Mass transport in arteries and the localization of atherosclerosis. Annu. Rev. Biomed. Eng. 5, 79–118 (2003).

Article  CAS  PubMed  Google Scholar 

Fang, Y., Wu, D. & Birukov, K. G. Mechanosensing and mechanoregulation of endothelial cell functions. Compr. Physiol. 9, 873–904 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Gallego-Colon, E., Daum, A. & Yosefy, C. Statins and PCSK9 inhibitors: a new lipid-lowering therapy. Eur. J. Pharmacol. 878, 173114 (2020).

Article  CAS  PubMed  Google Scholar 

Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

Article  CAS  PubMed  Google Scholar 

Kwak, B. R. et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur. Heart J. 35, 3013–3020 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tarbell, J. M., Shi, Z. D., Dunn, J. & Jo, H. Fluid mechanics, arterial disease, and gene expression. Annu. Rev. Fluid Mech. 46, 591–614 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Andueza, A. et al. Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study. Cell Rep. 33, 108491 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chiu, J. J. & Chien, S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91, 327–387 (2011).

Article  PubMed  Google Scholar 

Simmons, R. D., Kumar, S. & Jo, H. The role of endothelial mechanosensitive genes in atherosclerosis and omics approaches. Arch. Biochem. Biophys. 591, 111–131 (2016).

Article  CAS  PubMed  Google Scholar 

Fernandez-Friera, L. et al. Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort: the PESA (progression of early subclinical atherosclerosis) study. Circulation 131, 2104–2113 (2015).

Article  PubMed  Google Scholar 

Laclaustra, M. et al. Femoral and carotid subclinical atherosclerosis association with risk factors and coronary calcium: the AWHS study. J. Am. Coll. Cardiol. 67, 1263–1274 (2016).

Article  PubMed  Google Scholar 

Nam, D. et al. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 297, H1535–H1543 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng, C. et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113, 2744–2753 (2006).

Article  PubMed  Google Scholar 

Kumar, S., Kang, D. W., Rezvan, A. & Jo, H. Accelerated atherosclerosis development in C57Bl6 mice by overexpressing AAV-mediated PCSK9 and partial carotid ligation. Lab. Invest. 97, 935–945 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, C. W. et al. Disturbed flow promotes arterial stiffening through thrombospondin-1. Circulation 136, 1217–1232 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuhlmann, M. T. et al. Implantation of a carotid cuff for triggering shear-stress induced atherosclerosis in mice. J. Vis. Exp. https://doi.org/10.3791/3308 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Tang, D., Geng, F., Yu, C. & Zhang, R. Recent application of zebrafish models in atherosclerosis research. Front. Cell Dev. Biol. 9, 643697 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Schlegel, A. Zebrafish models for dyslipidemia and atherosclerosis research. Front. Endocrinol. 7, 159 (2016).

Article  Google Scholar 

Baek, K. I. et al. Vascular injury in the zebrafish tail modulates blood flow and peak wall shear stress to restore embryonic circular network. Front. Cardiovasc. Med. 9, 841101 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsu, J. J. et al. Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation. JCI Insight 4, e124460 (2019).

Article  PubMed Central  Google Scholar 

Lee, J. et al. 4-Dimensional light-modulation of cardiac trabeculation. J. Clin. Investig. 126, 1679–1690 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Lee, J. et al. Spatial and temporal variations in hemodynamic forces initiate cardiac trabeculation. JCI Insight https://doi.org/10.1172/jci.insight.96672 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Baek, K. I. et al. Flow-responsive vascular endothelial growth factor receptor-protein kinase C isoform epsilon signaling mediates glycolytic metabolites for vascular repair. Antioxid. Redox Signal. 28, 31–43 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dewey, C. F. Jr., Bussolari, S. R., Gimbrone, M. A. Jr. & Davies, P. F. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103, 177–185 (1981).

Article  PubMed  Google Scholar 

Lawrence, M. B., McIntire, L. V. & Eskin, S. G. Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion. Blood 70, 1284–1290 (1987).

Article  CAS  PubMed  Google Scholar 

Rezvan, A., Ni, C.-W., Alberts-Grill, N. & Jo, H. Animal, in vitro, and ex vivo models of flow-dependent atherosclerosis: role of oxidative stress. Antioxid. Redox Signal. 15, 1433–1448 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colgan, O. C. et al. Regulation of bovine brain microvascular endothelial tight junction assembly and barrier function by laminar shear stress. Am. J. Physiol. Heart Circ. Physiol. 292, H3190–H3197 (2007).

Article  CAS  PubMed  Google Scholar 

Orsenigo, F. et al. Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nat. Commun. 3, 1208 (2012).

Article  PubMed  Google Scholar 

Caolo, V. et al. Shear stress and VE-cadherin. Arterioscler. Thromb. Vasc. Biol. 38, 2174–2183 (2018).

Article  CAS  PubMed  Google Scholar 

Levesque, M. J., Nerem, R. M. & Sprague, E. A. Vascular endothelial cell proliferation in culture and the influence of flow. Biomaterials 11, 702–707 (1990).

Article 

留言 (0)

沒有登入
gif