A trivalent 4f complex with two bis-silylamide ligands displaying slow magnetic relaxation

Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

Article  CAS  PubMed  Google Scholar 

Ardavan, A. et al. Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98, 057201 (2007).

Article  PubMed  Google Scholar 

Ungur, L. & Chibotaru, L. F. Magnetic anisotropy in the excited states of low symmetry lanthanide complexes. Phys. Chem. Chem. Phys. 13, 20086 (2011).

Article  CAS  PubMed  Google Scholar 

Ungur, L. & Chibotaru, L. F. Strategies toward high-temperature lanthanide-based single-molecule magnets. Inorg. Chem. 55, 10043–10056 (2016).

Article  CAS  PubMed  Google Scholar 

Chilton, N. F. Design criteria for high-temperature single-molecule magnets. Inorg. Chem. 54, 2097–2099 (2015).

Article  CAS  PubMed  Google Scholar 

Donati, F. et al. Magnetic remanence in single atoms. Science 352, 318–321 (2016).

Article  CAS  PubMed  Google Scholar 

Liu, F. et al. Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene. Nat. Commun. 8, 16098 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goodwin, C. A. P., Ortu, F., Reta, D., Chilton, N. F. & Mills, D. P. Molecular magnetic hysteresis at 60 Kelvin in dysprosocenium. Nature 548, 439–442 (2017).

Article  CAS  PubMed  Google Scholar 

Guo, F.-S. et al. A dysprosium metallocene single-molecule magnet functioning at the axial limit. Angew. Chem. Int. Ed. 56, 11445–11449 (2017).

Article  CAS  Google Scholar 

Gould, C. A. et al. Synthesis and magnetism of neutral, linear metallocene complexes of terbium(II) and dysprosium(II). J. Am. Chem. Soc. 141, 12967–12973 (2019).

Article  CAS  PubMed  Google Scholar 

Guo, F.-S. et al. Magnetic hysteresis up to 80 Kelvin in a dysprosium metallocene single-molecule magnet. Science 362, 1400–1403 (2018).

Article  CAS  PubMed  Google Scholar 

Willson, S. P. & Andrews, L. Characterization of the reaction products of laser-ablated late lanthanide metal atoms with molecular oxygen: infrared spectra of LnO, LnO+, LnO−, LnO2, LnO2−, LnO3−, and (LnO)2 in solid argon. J. Phys. Chem. A 103, 6972–6983 (1999).

Article  CAS  Google Scholar 

Goodwin, C. A. P. et al. Heteroleptic samarium(III) halide complexes probed by fluorescence-detected L3-edge X-ray absorption spectroscopy. Dalton Trans. 47, 10613–10625 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goodwin, C. A. P. et al. Physicochemical properties of near-linear lanthanide(II) bis(silylamide) complexes (Ln = Sm, Eu, Tm, Yb). Inorg. Chem. 55, 10057–10067 (2016).

Article  CAS  PubMed  Google Scholar 

Chilton, N. F., Goodwin, C. A. P., Mills, D. P. & Winpenny, R. E. P. The first near-linear bis(amide) f-block complex: a blueprint for a high temperature single molecule magnet. Chem. Commun. 51, 101–103 (2015).

Article  CAS  Google Scholar 

Eaborn, C., Hitchcock, P. B., Izod, K., Lu, Z.-R. & Smith, J. D. Alkyl Derivatives of europium(+2) and ytterbium(+2). Crystal structures of Eu[C(SiMe3)3]2, Yb[C(SiMe3)2(SiMe2CH=CH2)]I·OEt2 and Yb[C(SiMe3)2(SiMe2OMe)]I·OEt2. Organometallics 15, 4783–4790 (1996).

Eaborn, C., Hitchcock, P. B., Izod, K. & Smith, J. D. A monomeric solvent-free bent lanthanide dialkyl and a lanthanide analog of a Grignard reagent. Crystal structures of Yb2 and [YbI·OEt2]2. J. Am. Chem. Soc. 116, 12071–12072 (1994).

Article  CAS  Google Scholar 

Cotton, S. in Lanthanides and Actinides (ed. Cotton, S.) 10–84 (Macmillan, 1991).

Day, B. M. et al. Rare-earth cyclobutadienyl sandwich complexes: synthesis, structure and dynamic magnetic properties. Chem. Eur. J. 24, 16779–16782 (2018).

Article  CAS  PubMed  Google Scholar 

Evans, W. J., Davis, B. L. & Ziller, J. W. Synthesis and structure of tris(alkyl- and silyl-tetramethylcyclopentadienyl) complexes of lanthanum. Inorg. Chem. 40, 6341–6348 (2001).

Article  CAS  PubMed  Google Scholar 

Meng, Y.-S., Zhang, Y.-Q., Wang, Z.-M., Wang, B.-W. & Gao, S. Weak ligand-field effect from ancillary ligands on enhancing single-ion magnet performance. Chem. Eur. J. 22, 12724–12731 (2016).

Article  CAS  PubMed  Google Scholar 

Nicholas, H. M. et al. Electronic structures of bent lanthanide(III) complexes with two N-donor ligands. Chem. Sci. 10, 10493–10502 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, J.-L. et al. A six-coordinate ytterbium complex exhibiting easy-plane anisotropy and field-induced single-ion magnet behavior. Inorg. Chem. 51, 8538–8544 (2012).

Article  CAS  PubMed  Google Scholar 

Pointillart, F., Cador, O., Le Guennic, B. & Ouahab, L. Uncommon lanthanide ions in purely 4f single molecule magnets. Coord. Chem. Rev. 346, 150–175 (2017).

Article  CAS  Google Scholar 

Bartlett, R. A. & Power, P. P. Two-coordinate, nonlinear, crystalline d6 and d7 complexes: syntheses and structures of M2, M = Fe or Co. J. Am. Chem. Soc. 109, 7563–7564 (1987).

Article  CAS  Google Scholar 

Chen, H., Bartlett, R. A., Dias, H. V. R., Olmstead, M. M. & Power, P. P. The use of very crowded silylamide ligands –N(SiMenPh3−n)2 (n = 0, 1, or 2) to synthesize crystalline, two-coordinate, derivatives to manganese(II), iron(II), and cobalt(II) and the free ion [Ph3SiNSiPh3]−. J. Am. Chem. Soc. 111, 4338–4345 (1989).

Article  CAS  Google Scholar 

Power, P. P., Ruhlandt-Senge, K. & Shoner, S. C. Synthesis and characterization of the isoelectronic d10 species bis[bis(methyldiphenylsilyl)amido]cuprate(1−) and -zinc. Inorg. Chem. 30, 5013–5015 (1991).

Article  CAS  Google Scholar 

Bartlett, R. A., Olmstead, M. M. & Power, P. P. Structural characterization of the ‘magnesylamine’ [(Et2O)Mg(Cl)]2 and the two-coordinate magnesium amide Mg2. Inorg. Chem. 33, 4800–4803 (1994).

Article  CAS  Google Scholar 

Leng, J.-D., Goodwin, C. A. P., Vitorica-Yrezabal, I. J. & Mills, D. P. Salt metathesis routes to homoleptic near-linear Mg(II) and Ca(II) bulky bis(silyl)amide complexes. Dalton Trans. 47, 12526–12533 (2018).

Article  CAS  PubMed  Google Scholar 

Demir, S., Zadrozny, J. M. & Long, J. R. Large spin-relaxation barriers for the low-symmetry organolanthanide complexes [Cp*2Ln(BPh4)] (Cp* = pentamethylcyclopentadienyl; Ln = Tb, Dy). Chem. Eur. J. 20, 9524–9529 (2014).

Article  CAS  PubMed  Google Scholar 

Day, B. M., Guo, F.-S. & Layfield, R. A. Cyclopentadienyl ligands in lanthanide single-molecule magnets: one ring to rule them all? Acc. Chem. Res. 51, 1880–1889 (2018).

Article  CAS  PubMed  Google Scholar 

McClain, K. R. et al. High-temperature magnetic blocking and magneto-structural correlations in a series of dysprosium(III) metallocenium single-molecule magnets. Chem. Sci. 9, 8492–8503 (2018).

Article  Google Scholar 

Hitchcock, P. B., Lappert, M. F., Smith, R. G., Bartlett, R. A. & Power, P. P. Synthesis and structural characterisation of the first neutral homoleptic lanthanide metal(III) alkyls: [LnR3] [Ln = La or Sm, R = CH(SiMe3)2]. Chem. Commun. 1007–1009 (1988).

Clark, D. L., Gordon, J. C., Hay, P. J., Martin, R. L. & Poli, R. DFT study of tris(bis(trimethylsilyl)methyl)lanthanum and -samarium. Organometallics 21, 5000–5006 (2002).

Article  CAS  Google Scholar 

Perrin, L., Maron, L., Eisenstein, O. & Lappert, M. F. γ Agostic C–H or β agostic Si–C bonds in La3? A DFT study of the role of the ligand. New J. Chem. 27, 121–127 (2003).

Article  CAS  Google Scholar 

Boyde, N. C., Chmely, S. C., Hanusa, T. P., Rheingold, A. L. & Brennessel, W. W. Structural distortions in M[E(SiMe3)2]3 complexes (M = group 15, f-element; E = N, CH): is three a crowd? Inorg. Chem. 53, 9703–9714 (2014).

Article  CAS  PubMed  Google Scholar 

Goodwin, C. A. P. et al. Homoleptic trigonal planar lanthanide complexes stabilized by superbulky silylamide ligands. Organometallics 34, 2314–2325 (2015).

Article  CAS  Google Scholar 

Bryan, A. M., Merrill, W. A., Reiff, W. M., Fettinger, J. C. & Power, P. P. Synthesis, structural, and magnetic characterization of linear and bent geometry cobalt(II) and nickel(II) amido complexes: evidence of very large spin–orbit coupling effects in rigorously linear coordinated Co2+. Inorg. Chem. 51, 3366–3373 (2012).

Article  CAS  PubMed  Google Scholar 

Weller, R., Ruppach, L., Shlyaykher, A., Tambornino, F. & Werncke, C. G. Homoleptic quasilinear metal(I/II) silylamides of Cr–Co with phenyl and allyl functions—impact of the oxidation state on secondary ligand interactions. Dalton Trans. 50, 10947–10963 (2021).

Article  CAS  PubMed  Google Scholar 

Weller, R. et al. Quasilinear 3d-metal(I) complexes [KM(N(Dipp)SiR3)2] (M = Cr–Co)—structural diversity, solution state behaviour and reactivity. Dalton Trans. 50, 4890–4903 (2021).

Article  CAS  PubMed  Google Scholar 

Occhipinti, G. et al. Synthesis and stability of homoleptic metal(III) tetramethylaluminates. J. Am. Chem. Soc. 133, 6323–6337 (2011).

留言 (0)

沒有登入
gif