An engineered influenza virus to deliver antigens for lung cancer vaccination

Alcazer, V. et al. Neoepitopes-based vaccines: challenges and perspectives. Eur. J. Cancer 108, 55–60 (2019).

Article  PubMed  Google Scholar 

Blass, E. et al. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 18, 215–229 (2021).

Article  PubMed  Google Scholar 

Yarchoan, M. et al. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 17, 209–222 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malonis, R. J., Lai, J. R. & Vergnolle, O. Peptide-based vaccines: current progress and future challenges. Chem. Rev. 120, 3210–3229 (2020).

Article  CAS  PubMed  Google Scholar 

Sellars, M. C., Wu, C. J. & Fritsch, E. F. Cancer vaccines: building a bridge over troubled waters. Cell 185, 2770–2788 (2022).

Article  CAS  PubMed  Google Scholar 

Sharma, P. et al. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat. Rev. Cancer 11, 805–812 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Restifo, N. P. et al. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269–281 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daniel, S. At the bench: engineering the next generation of cancer vaccines. J. Leukoc. Biol. 108, 1435–1453 (2020).

Article  Google Scholar 

Bijker, M. S. et al. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur. J. Immunol. 38, 1033–1042 (2008).

Article  CAS  PubMed  Google Scholar 

Su, M. W. et al. Cognate peptide-induced destruction of CD8+ cytotoxic lymphocytes is due to fratricide. J. Immunol. 151, 658–667 (1993).

Article  CAS  PubMed  Google Scholar 

Audiger, C. et al. The importance of dendritic cells in maintaining immune tolerance. J. Immunol. 198, 2223–2231 (2017).

Article  CAS  PubMed  Google Scholar 

Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer 5, 263–274 (2005).

Article  CAS  PubMed  Google Scholar 

Nicolas, A. et al. The clinical role of the TME in solid cancer. Br. J. Cancer 120, 45–53 (2019).

Article  Google Scholar 

Altorki, N. K. et al. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat. Rev. Cancer 19, 9–31 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Twumasi-Boateng, K. et al. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat. Rev. Cancer 18, 419–432 (2018).

Article  CAS  PubMed  Google Scholar 

Dock, G. The influence of complicating diseases upon leukaemia. Am. J. Med. Sci. 127, 563 (1904).

Article  Google Scholar 

Gerlach, T. et al. Recombinant influenza A viruses as vaccine vectors. Expert Rev. Vaccines 18, 379–392 (2019).

Article  CAS  PubMed  Google Scholar 

Sellers, S. A. et al. The hidden burden of influenza: a review of the extra- pulmonary complications of influenza infection. Influenza Other Respir. Viruses 11, 372–393 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Kwong, J. C. et al. Acute myocardial infarction after laboratory-confirmed influenza infection. N. Engl. J. Med. 378, 345–353 (2018).

Article  PubMed  Google Scholar 

Si, L. et al. Generation of influenza A viruses as live but replication-incompetent virus vaccines. Science 354, 1170–1173 (2015).

Article  Google Scholar 

Miller, C. L. et al. Systemic delivery of a targeted synthetic immunostimulant transforms the immune landscape for effective tumor regression. Cell Chem. Biol. 29, 451–462 (2022).

Article  CAS  PubMed  Google Scholar 

Giavazzi, R. et al. Syngeneic murine metastasis models: B16 melanoma. Methods Mol. Biol. 1070, 131–140 (2014).

Article  CAS  PubMed  Google Scholar 

Pump, K. K. Morphology of the acinus of the human lung. Dis. Chest 66, 126–134 (1969).

Article  Google Scholar 

Newman, J. H. et al. Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proc. Natl Acad. Sci. USA 117, 1119–1128 (2020).

Article  CAS  PubMed  Google Scholar 

Zhao, H. et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 6, 263 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Helft, J. et al. Cross-presenting CD103+ dendritic cells are protected from influenza virus infection. J. Clin. Invest. 122, 4037–4047 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho, A. W. S. et al. Lung CD103+ dendritic cells efficiently transport influenza virus to the lymph node and load viral antigen onto MHC class I for presentation to CD8 T cells. J. Immunol. 187, 6011–6021 (2011).

Article  CAS  PubMed  Google Scholar 

Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marofi, F. et al. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res. Ther. 12, 81 (2021).

Article  PubMed  Google Scholar 

Ripley, R. T. & Rusch, V. W. Lung metastases. In Abeloff’s Clinical Oncology 5th edn (eds Niederhuber, J. E. et al.) 64–777 (Saunders, 2013).

Ferrucci, P. F. et al. Talimogene laherparepvec (T-VEC): an intralesional cancer immunotherapy for advanced melanoma. Cancers (Basel). 13, 1383 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertrand, A. et al. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med. 13, 211 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Weber, J. Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist. 12, 864–872 (2007).

Article  CAS  PubMed  Google Scholar 

Hamilton, J. R. et al. A recombinant antibody-expressing influenza virus delays tumor growth in a mouse model. Cell Rep. 22, 1–7 (2018).

Article  CAS  PubMed  Google Scholar 

Wandzik, J. M. et al. A structure-based model for the complete transcription cycle of influenza polymerase. Cell 181, 877–893 (2020).

Article  CAS  PubMed  Google Scholar 

Jorba, N. et al. Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication. PLoS Pathog. 5, e1000462 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Vreede, F. T. et al. Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J Virol. 78, 9568–9572 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif