New opportunities for RGD-engineered metal nanoparticles in cancer

Fass L. Imaging and cancer: A review. Wiley-Blackwell; 2008. [cited 2023 Feb 2];2:115. Available from: /pmc/articles/PMC5527766/. Mol Oncol [Internet].

Ehman RL, Hendee WR, Welch MJ, Dunnick NR, Bresolin LB, Arenson RL et al. Blueprint for imaging in biomedical research. Radiology [Internet]. Radiology; 2007 [cited 2023 Feb 2];244:12–27. Available from: https://pubmed.ncbi.nlm.nih.gov/17507725/.

De Torres JP, Bastarrika G, Wisnivesky JP, Alcaide AB, Campo A, Seijo LM et al. Assessing the relationship between lung cancer risk and emphysema detected on low-dose CT of the chest. Chest [Internet]. Chest; 2007 [cited 2023 Feb 2];132:1932–8. Available from: https://pubmed.ncbi.nlm.nih.gov/18079226/.

Lehman CD, Isaacs C, Schnall MD, Pisano ED, Ascher SM, Weatherall PT et al. Cancer yield of mammography, MR, and US in high-risk women: prospective multi-institution breast cancer screening study. Radiology [Internet]. Radiology; 2007 [cited 2023 Feb 2];244:381–8. Available from: https://pubmed.ncbi.nlm.nih.gov/17641362/.

Nelson ED, Slotoroff CB, Gomella LG, Halpern EJ. Targeted biopsy of the prostate: the impact of color Doppler imaging and elastography on prostate cancer detection and Gleason score. Urology [Internet]. Urology; 2007 [cited 2023 Feb 2];70:1136–40. Available from: https://pubmed.ncbi.nlm.nih.gov/18158034/.

Lee KS, Jeong YJ, Han J, Kim BT, Kim H, Kwon OJ. T1 non-small cell lung cancer: imaging and histopathologic findings and their prognostic implications. Radiographics [Internet]. Radiographics; 2004 [cited 2023 Feb 2];24. Available from: https://pubmed.ncbi.nlm.nih.gov/15537972/.

Fatima M, Sheikh A, Hasan N, Sahebkar A, Riadi Y, Kesharwani P. Folic acid conjugated poly(amidoamine) dendrimer as a smart nanocarriers for tracing, imaging, and treating cancers over-expressing folate receptors. Eur Polym J Pergamon. 2022;170:111156.

Article  CAS  Google Scholar 

Gupta A, Mathur R, Singh S, Bag N, Khan UA, Ahmad FJ, et al. 99mTc-Methionine gold nanoparticles as a Promising Biomaterial for enhanced Tumor Imaging. J Pharm Sci Elsevier B V. 2021;110:888–97.

CAS  Google Scholar 

Kesharwani P, Choudhury H, Meher JG, Pandey M, Gorain B. Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging. Prog. Mater. Sci. Elsevier Ltd; 2019. p. 484–508.

Luong D, Sau S, Kesharwani P, Iyer AK. Polyvalent Folate-Dendrimer-Coated Iron Oxide Theranostic Nanoparticles for Simultaneous Magnetic Resonance Imaging and Precise Cancer Cell Targeting. Biomacromolecules. American Chemical Society; 2017;acs.biomac.6b01885.

Frangioni JV. New Technologies for Human Cancer Imaging. J Clin Oncol [Internet]. American Society of Clinical Oncology; 2008 [cited 2023 Feb 2];26:4012. Available from: /pmc/articles/PMC2654310/.

Groebe K, Mueller-Klieser W. On the relation between size of necrosis and diameter of tumor spheroids. Int J Radiat Oncol Biol Phys [Internet]. Elsevier Inc.; 1996 [cited 2023 Feb 2];34:395–401. Available from: https://pubmed.ncbi.nlm.nih.gov/8567341/.

Naumov GN, Akslen LA, Folkman J. Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle [Internet]. Cell Cycle; 2006 [cited 2023 Feb 2];5:1779–87. Available from: https://pubmed.ncbi.nlm.nih.gov/16931911/.

Rizg WY, Hosny KM, Mahmoud SS, Kammoun AK, Alamoudi AJ, Tayeb HH, et al. Repurposing lovastatin cytotoxicity against the Tongue Carcinoma HSC3 Cell Line using a Eucalyptus Oil-Based nanoemulgel carrier. Gels MDPI. 2022;8:176.

Article  CAS  Google Scholar 

Kesharwani P, Fatima M, Singh V, Sheikh A, Almalki WH, Gajbhiye V et al. Itraconazole and Difluorinated-Curcumin Containing Chitosan Nanoparticle Loaded Hydrogel for Amelioration of Onychomycosis. Biomimetics 2022, Vol. 7,Page 206. Multidisciplinary Digital Publishing Institute; 2022;206.

Riadi Y, Afzal O, Geesi MH, Almalki WH, Singh T. Baicalin-Loaded Lipid–Polymer Hybrid Nanoparticles Inhibiting the Proliferation of Human Colon Cancer: Pharmacokinetics and In Vivo Evaluation. Polym 2023, Vol 15, Page 598. Multidisciplinary Digital Publishing Institute; 2023;15:598.

Salem HF, Gamal A, Saeed H, Kamal M, Tulbah AS. Enhancing the Bioavailability and Efficacy of Vismodegib for the Control of Skin Cancer: In Vitro and Vivo Studies. Pharm 2022, Vol. 15,Page 126. Multidisciplinary Digital Publishing Institute; 2022;126.

Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nat 2008 4527187 [Internet]. Nature Publishing Group; 2008 [cited 2023 Feb 2];452:580–9. Available from: https://www.nature.com/articles/nature06917.

Zeng L, Gowda BHJ, Ahmed MG, Abourehab MAS, Chen ZS, Zhang C et al. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 2023 221. BioMed Central; 2023;22:1–50.

Liu Z, Parveen N, Rehman U, Aziz A, Sheikh A, Abourehab MAS, et al. Unravelling the enigma of siRNA and aptamer mediated therapies against pancreatic cancer. Mol Cancer 2023 221 BioMed Central. 2023;22:1–22.

Google Scholar 

Kesharwani P, Sheikh A, Abourehab MAS, Salve R, Gajbhiye V. A combinatorial delivery of survivin targeted siRNA using cancer selective nanoparticles for triple negative breast cancer therapy. J Drug Deliv Sci Technol Elsevier. 2023;80:104164.

Article  CAS  Google Scholar 

Hosseinikhah SM, Gheybi F, Moosavian SA, Shahbazi MA, Jaafari MR, Sillanpää M, et al. Role of exosomes in tumour growth, chemoresistance and immunity: state-of-the-art. Taylor & Francis; 2022. https://doi.org/101080/1061186X20222114000.

Rehman U, Abourehab MAS, Alexander A, Kesharwani P. Polymeric micelles assisted combinatorial therapy: is it new hope for pancreatic cancer? Eur Polym J Pergamon. 2023;184:111784.

Article  CAS  Google Scholar 

Parveen N, Abourehab MAS, Shukla R, Thanikachalam PV, Jain GK, Kesharwani P. Immunoliposomes as an emerging nanocarrier for breast cancer therapy. Eur Polym J Pergamon. 2023;184:111781.

Article  CAS  Google Scholar 

Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci. 2014. p. 268–307.

Rout SR, Bandaru R, Kenguva G, Hasan N, Alam MS, Shukla R et al. Dendrimers in photodynamic therapy. Nanomater Photodyn Ther Woodhead Publishing; 2023;281–305.

Chapman S, Dobrovolskaia M, Farahani K, Goodwin A, Joshi A, Lee H et al. Nanoparticles for cancer imaging: The good, the bad, and the promise. Nano Today [Internet]. Nano Today; 2013 [cited 2023 Feb 2];8:454–60. Available from: https://pubmed.ncbi.nlm.nih.gov/25419228/.

Grover R, Drall S, Poonia N, Kumar Jain G, Aggarwal G, Lather V, et al. CD44 and CD133 aptamer directed nanocarriers for cancer stem cells targeting. Eur Polym J Pergamon. 2023;183:111770.

Article  CAS  Google Scholar 

Fatima M, Karwasra R, Almalki WH, Sahebkar A, Kesharwani P. Galactose engineered nanocarriers: hopes and hypes in cancer therapy. Eur Polym J Pergamon. 2023;183:111759.

Article  CAS  Google Scholar 

Jain AK, Jain S, Abourehab MAS, Mehta P, Kesharwani P. An insight on topically applied formulations for management of various skin disorders. Taylor & Francis; 2022. pp. 1–27. https://doi.org/101080/0920506320222103625.

Khan Z, Alhalmi A, Tyagi N, Khan WU, Sheikh A, Abourehab MAS, et al. Folic acid engineered sulforaphane loaded microbeads for targeting breast cancer. Taylor & Francis; 2022. pp. 1–20. https://doi.org/101080/0920506320222144692.

Musyuni P, Bai J, Sheikh A, Vasanthan KS, Jain GK, Abourehab MAS, et al. Precision medicine: Ray of hope in overcoming cancer multidrug resistance. Drug Resist Updat Churchill Livingstone. 2022;65:100889.

Article  CAS  Google Scholar 

Fatima M, Sheikh A, Abourehab MAS;, Kesharwani P, Fatima M, Sheikh A, et al. Advancements in Polymeric Nanocarriers to mediate targeted therapy against Triple-Negative breast Cancer. Pharm 2022. Volume 14. Page 2432. Multidisciplinary Digital Publishing Institute; 2022. p. 2432.

Sheikh A, Abourehab MAS, Kesharwani P. The clinical significance of 4D printing. Drug Discov Today. Volume 28. Elsevier Current Trends; 2023. p. 103391.

Fatima M, Abourehab MAS, Aggarwal G, Jain GK, Sahebkar A, Kesharwani P. Advancement of cell-penetrating peptides in combating triple-negative breast cancer. Drug Discov Today Elsevier Current Trends. 2022;27:103353.

Article  CAS  Google Scholar 

Tulbah AS. Inhaled atorvastatin nanoparticles for Lung Cancer. Curr Drug Deliv. Volume 19. Bentham Science Publishers Ltd.; 2022. pp. 1073–82.

Toy R, Bauer L, Hoimes C, Ghaghada KB, Karathanasis E. Targeted Nanotechnology for Cancer Imaging. Adv Drug Deliv Rev [Internet]. NIH Public Access; 2014 [cited 2023 Feb 2];0:79. Available from: /pmc/articles/PMC4169743/.

El-Ela FIA, Gamal A, Elbanna HA, ElBanna AH, Salem HF, Tulbah AS. In Vitro and In Vivo Evaluation of the Effectiveness and Safety of Amygdalin as a Cancer Therapy. Pharm 2022, Vol 15, Page 1306. Multidisciplinary Digital Publishing Institute; 2022;15:1306.

Sharma D, Singh S, Kumar P, Jain GK, Aggarwal G, Almalki WH et al. Mechanisms of photodynamic therapy. Nanomater Photodyn Ther Woodhead Publishing; 2023;41–54.

Piner RD, Zhu J, Xu F, Hong S, Mirkin CA. “Dip-Pen” nanolithography. Science [Internet]. Science; 1999 [cited 2023 Feb 2];283:661–3. Available from: https://pubmed.ncbi.nlm.nih.gov/9924019/.

Canelas DA, Herlihy KP, DeSimone JM. Top-Down Particle Fabrication: Control of Size and Shape for Diagnostic Imaging and Drug Delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol [Internet]. NIH Public Access; 2009 [cited 2023 Feb 2];1:391. Available from: /pmc/articles/PMC2804992/.

Khan AA, Janardhanan R, Kishore J, Karwasra R, Saeed S, Das BC, et al. Unani System of Medicine and it’s Development in Contemporary Healthcare: a Comprehensive Review. J Pharm Negat Results. 2022;13:634–45.

Google Scholar 

Fu X, Rehman U, Wei L, Chen Z-S, Abourehab MAS, Kesharwani P, et al. Silver-dendrimer nanocomposite as emerging therapeutics in anti-bacteria and beyond. Drug Resist Updat Churchill Livingstone. 2023;68:100935.

Article  CAS  Google Scholar 

Kesharwani P, Chadar R, Shukla R, Jain GK, Aggarwal G, Abourehab MAS, et al. Recent advances in multifunctional dendrimer-based nanoprobes for breast cancer theranostics. Taylor & Francis; 2022. pp. 1–39. https://doi.org/101080/0920506320222103627.

Dongsar TT, Dongsar TS, Abourehab MAS, Gupta N, Kesharwani P. Emerging application of magnetic nanoparticles for breast cancer therapy. Eur Polym J Pergamon. 2023;187:111898.

Article  CAS  Google Scholar 

Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol [Internet]. J Pharm Pharmacol; 2008 [cited 2023 Feb 1];60:977–85. Available from: https://pubmed.ncbi.nlm.nih.gov/18644191/.

Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol [Internet]. Phys Med Biol; 2004 [cited 2023 Feb 1];49. Available from: https://pubmed.ncbi.nlm.nih.gov/15509078/.

Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater [Internet]. Nat Mater; 2009 [cited 2023 Feb 1];8:935–9. Available from: https://pubmed.ncbi.nlm.nih.gov/19881498/.

Han G, Ghosh P, Rotello VM. Multi-functional gold nanoparticles for drug delivery. Adv Exp Med Biol [Internet]. Adv Exp Med Biol; 2007 [cited 2023 Feb 1];620:48–56. Available from: https://pubmed.ncbi.nlm.nih.gov/18217334/.

Nishiyama N. Nanocarriers shape up for long life. Nat Nanotechnol 2007 24 [Internet]. Nature Publishing Group; 2007 [cited 2023 Feb 1];2:203–4. Available from: https://www.nature.com/articles/nnano.2007.88.

Jones MR, Millstone JE, Giljohann DA, Seferos DS, Young KL, Mirkin CA. Plasmonically controlled nucleic acid dehybridization with gold nanoprisms. Chemphyschem [Internet]. Chemphyschem; 2009 [cited 2023 Feb 1];10:1461–5. Available from: https://pubmed.ncbi.nlm.nih.gov/19431161/.

Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J. Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles. Adv Mater [Internet]. John Wiley & Sons, Ltd; 2010 [cited 2023 Feb 1];22:1805–25. Available from: https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1002/adma.200902557.

Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev [Internet]. The Royal Society of Chemistry; 2008 [cited 2023 Feb 1];37:1896–908. Available from: https://pubs.rsc.org/en/content/articlehtml/2008/cs/b712170a.

Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res [Internet]. Acc Chem Res; 2008 [cited 2023 Feb 1];41:1578–86. Available from: https://pubmed.ncbi.nlm.nih.gov/18447366/.

Lee KS, El-Sayed MA. Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and, Composition M. J Phys Chem B [Internet]. American Chemical Society; 2006 [cited 2023 Feb 1];110:19220–5. Available from: https://doi.org/10.1021/jp062536y.

Chen H, Shao L, Ming T, Sun Z, Zhao C, Yang B et al. Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals. Small [Internet]. John Wiley & Sons, Ltd; 2010 [cited 2023 Feb 1];6:2272–80. Available from: https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1002/smll.201001109.

Day ES, Morton JG, West JL. Nanoparticles for thermal cancer therapy. J Biomech Eng [Internet]. J Biomech Eng; 2009 [cited 2023 Feb 1];131. Available from: https://pubmed.ncbi.nlm.nih.gov/19640133/.

Evans ER, Bugga P, Asthana V, Drezek R. Metallic Nanoparticles for Cancer Immunotherapy. Mater Today (Kidlington) [Internet]. NIH Public Access; 2018 [cited 2023 Apr 10];21:673. Available from: /pmc/articles/PMC6124314/.

Khursheed R, Dua K, Vishwas S, Gulati M, Jha NK, Aldhafeeri GM et al. Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Biomed Pharmacother [Internet]. Biomed Pharmacother; 2022 [cited 2023 Feb 1];150. Available from: https://pubmed.ncbi.nlm.nih.gov/35447546/.

Muthuraman A, Rishitha N, Mehdi S. Role of nanoparticles in bioimaging, diagnosis and treatment of cancer disorder. Des Nanostruct Theranostics Appl William Andrew Publishing; 2018;529–62.

Weiner RE, Thakur ML. Radiolabeled peptides in oncology: role in diagnosis and treatment. BioDrugs [Internet]. BioDrugs; 2005 [cited 2023 Feb 1];19:145–63. Available from: https://pubmed.ncbi.nlm.nih.gov/15984900/.

Mahjoubin-Tehran M, Aghaee-Bakhtiari SH, Sahebkar A, Oskuee RK, Kesharwani P, Jalili A. In silico and experimental validation of a new modified arginine-rich cell penetrating peptide for plasmid DNA delivery. Int J Pharm Elsevier. 2022;624:122005.

Article  CAS  Google Scholar 

Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol [Internet]. Annu Rev Immunol; 2007 [cited 2023 Feb 1];25:619–47. Available from: https://pubmed.ncbi.nlm.nih.gov/17201681/.

Rüegg C, Alghisi GC. Vascular integrins: therapeutic and imaging targets of tumor angiogenesis. Recent Results Cancer Res [Internet]. Recent Results Cancer Res; 2010 [cited 2023 Feb 1];180:83–101. Available from: https://pubmed.ncbi.nlm.nih.gov/20033379/.

Liddington RC. Structural Aspects of Integrins. Springer, Dordrecht; 2014 [cited 2023 Feb 1];111–26. Available from: https://link.springer.com/chapter/10.1007/978-94-017-9153-3_8.

Shi J, Wang F, Liu S. Radiolabeled cyclic RGD peptides as radiotracers for tumor imaging. Biophys Reports [Internet]. Springer; 2016 [cited 2023 Feb 1];2:1. Available from: /pmc/articles/PMC5071373/.

Bernhagen D, Jungbluth V, Quilis NG, Dostalek J, White PB, Jalink K et al. Bicyclic RGD Peptides with Exquisite Selectivity for the Integrin α v β 3 Receptor Using a “random Design” Approach. ACS Comb Sci [Internet]. American Chemical Society; 2019 [cited 2023 Feb 1];21:198–206. Available from: https://doi.org/10.1021/acscombsci.8b00144.

Meyer A, Auernheimer J, Modlinger A, Kessler H. Targeting RGD recognizing integrins: drug development, biomaterial research, tumor imaging and targeting. Curr Pharm Des [Internet]. Curr Pharm Des; 2006 [cited 2023 Feb 1];12:2723–47. Available from: https://pubmed.ncbi.nlm.nih.gov/16918408/.

Ruoslahti E. The RGD story: A personal account. Matrix Biol [Internet]. Elsevier; 2003 [cited 2023 Feb 1];22:459–65. Available from: https://pubmed.ncbi.nlm.nih.gov/14667838/.

Danhier F, Breton A, Le PV. RGD-based strategies to targpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm [Internet]. Mol Pharm; 2012 [cited 2022 Dec 7];9:2961–73. Available from: https://pubmed.ncbi.nlm.nih.gov/22967287/.

Jin Y, Tong D, yue, Chen J ning, Feng Z, ying, Yang J yong, Shao C et al. Overexpression of osteopontin, αvβ3 and Pim-1 associated with prognostically important clinicopathologic variables in non-small cell lung cancer. PLoS One [Internet]. PLoS One; 2012 [cited 2023 Feb 1];7. Available from: https://pubmed.ncbi.nlm.nih.gov/23119061/.

Paolillo M, Schinelli S. Integrins and Exosomes, a Dangerous Liaison in Cancer Progression. Cancers (Basel) [Internet]. Multidisciplinary Digital Publishing Institute (MDPI); 2017 [cited 2023 Feb 1];9. Available from: /pmc/articles/PMC5575598/.

Li H, Li K, Zeng Q, Zeng Y, Chen D, Pang L et al. Novel vinyl-modified RGD conjugated silica nanoparticles based on photo click chemistry for in vivo prostate cancer targeted fluorescence imaging. RSC Adv [Internet]. The Royal Society of Chemistry; 2019 [cited 2023 Apr 11];9:25318–25. Available from: https://pubs.rsc.org/en/content/articlehtml/2019/ra/c9ra04513a.

Thundimadathil J. Cancer treatment using peptides: current therapies and future prospects. J Amino Acids [Internet]. J Amino Acids; 2012 [cited 2023 Feb 1];2012:1–13. Available from: https://pubmed.ncbi.nlm.nih.gov/23316341/.

Toporkiewicz M, Meissner J, Matusewicz L, Czogalla A, Sikorski AF. Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: principles, hopes, and challenges. Int J Nanomedicine [Internet]. Int J Nanomedicine; 2015 [cited 2023 Feb 1];10:1399–414. Available from: https://pubmed.ncbi.nlm.nih.gov/25733832/.

Anderson LR, Owens TW, Naylor MJ. Structural and mechanical functions of integrins. Biophys Rev [Internet]. Biophys Rev; 2014 [cited 2023 Feb 1];6:203–13. Available from: https://pubmed.ncbi.nlm.nih.gov/28510180/.

Zako T, Nagata H, Terada N, Utsumi A, Sakono M, Yohda M et al. Cyclic RGD peptide-labeled upconversion nanophosphors for tumor cell-targeted imaging. Biochem Biophys Res Commun [Internet]. Biochem Biophys Res Commun; 2009 [cited 2023 Feb 2];381:54–8. Available from: https://pubmed.ncbi.nlm.nih.gov/19351594/.

Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem Rev [Internet]. American Chemical Society; 2004 [cited 2023 Feb 2];104:139–73. Available from: https://pubs.acs.org/doi/abs/https://doi.org/10.1021/cr020357g.

Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J Phys Chem B [Internet]. American Chemical Society; 2006 [cited 2022 Dec 15];110:7238–48. Available from: https://doi.org/10.1021/jp057170o.

Mahmoudi A, Kesharwani P, Majeed M, Teng Y, Sahebkar A. Recent advances in nanogold as a promising nanocarrier for curcumin delivery. Colloids Surf B Biointerfaces Elsevier; 2022;112481.

Gupta A, Mathur R, Singh S, Bag N, Khan UA, Ahmad FJ et al. 99mTc-Methionine Gold Nanoparticles as a Promising Biomaterial for Enhanced Tumor Imaging. J Pharm Sci. Elsevier BV; 2020.

Bapat RA, Chaubal TV, Dharmadhikari S, Abdulla AM, Bapat P, Alexander A et al. Recent advances of gold nanoparticles as biomaterial in dentistry. Int. J. Pharm. Elsevier B.V.; 2020. p. 119596.

Devi L, Gupta R, Jain SK, Singh S, Kesharwani P. Synthesis, characterization and in vitro assessment of colloidal gold nanoparticles of Gemcitabine with natural polysaccharides for treatment of breast cancer. J Drug Deliv Sci Technol. Editions de Sante; 2020;56.

Gold Nanoparticles. Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology | Chemical Reviews [Internet]. [cited 2022 Dec 15]. Available from: https://pubs.acs.org/doi/10.1021/cr030698%2B.

Zhang Z, Wang J, Chen C. Gold nanorods based platforms for light-mediated theranostics. Theranostics. 2013;3:223–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang X, El-Sayed MA. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 2010;1:13–28.

Article  Google Scholar 

Kumar A, Mazinder Boruah B, Liang XJ. Gold nanoparticles: Promising nanomaterials for the diagnosis of cancer and HIV/AIDS. J Nanomater. 2011;2011.

Van de Wiele C, Lahorte C, Oyen W, Boerman O, Goethals I, Slegers G, et al. Nuclear medicine imaging to predict response to radiotherapy: a review. Int J Radiat Oncol Biol Phys. 2003;55:5–15.

Article  PubMed  Google Scholar 

Marchalonis JJ. An enzymic method for the trace iodination of immunoglobulins and other proteins. Biochem J. 1969;113:299–305.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Varagnolo L, Stokkel MPM, Mazzi U, Pauwels EKJ. 18F-labeled radiopharmaceuticals for PET in oncology, excluding FDG. Nucl Med Biol. 2000;27:103–12.

Article  CAS  PubMed  Google Scholar 

Reichert DE, Lewis JS, Anderson CJ. Metal complexes as diagnostic tools. Coord Chem Rev. 1999;184:3–66.

Article  CAS 

留言 (0)

沒有登入
gif