Thrombospondin-2 Couples Pressure-Promoted Chondrogenesis through NF-κB Signaling

Cao W, Lin W, Cai H, Chen Y, Man Y, Liang J, et al. Dynamic mechanical loading facilitated chondrogenic differentiation of rabbit BMSCs in collagen scaffolds. Regen Biomater. 2019;6:99–106.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schätti O, Grad S, Goldhahn J, Salzmann G, Li Z, Alini M, et al. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur Cells Mater. 2011;22:214–25.

Article  Google Scholar 

Kwon H, Brown WE, Lee CA, Wang D, Paschos N, Hu JC, et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol. 2019;15:550–70.

Article  PubMed  PubMed Central  Google Scholar 

Mollon B, Kandel R, Chahal J, Theodoropoulos J. The clinical status of cartilage tissue regeneration in humans. Osteoarthritis Cartilage. 2013;21:1824–33.

Article  CAS  PubMed  Google Scholar 

Elder BD, Athanasiou KA. Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng Part B Rev. 2009;15:43–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin W, Zhao Y, Cheng B, Zhao H, Miao L, Li Q, et al. NMDAR and JNK activation in the spinal trigeminal nucleus caudalis contributes to masseter hyperalgesia induced by stress. Front Cell Neurosci. 2019;13:495.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bornstein P, Armstrong LC, Hankenson KD, Kyriakides TR, Yang Z. Thrombospondin 2, a matricellular protein with diverse functions. Matrix Biol. 2000;19:557–68.

Article  CAS  PubMed  Google Scholar 

de Fraipont F, Nicholson AC, Feige JJ, Van Meir EG. Thrombospondins and tumor angiogenesis. Trends Mol Med. 2001;7:401–7.

Article  PubMed  Google Scholar 

Stenina-Adognravi O. Invoking the power of thrombospondins: regulation of thrombospondins expression. Matrix Biol. 2014;37:69–82.

Article  CAS  PubMed  Google Scholar 

Kyriakides TR, Zhu YH, Yang Z, Bornstein P. The distribution of the matricellular protein thrombospondin 2 in tissues of embryonic and adult mice. J Histochem Cytochem. 1998;46:1007–15.

Article  CAS  PubMed  Google Scholar 

Jeong SY, Ha J, Lee M, Jin HJ, Kim DH, Choi SJ, et al. Autocrine action of thrombospondin-2 determines the chondrogenic differentiation potential and suppresses hypertrophic maturation of human umbilical cord blood-derived mesenchymal stem cells. Stem Cells. 2015;33:3291–303.

Article  CAS  PubMed  Google Scholar 

Jeong SY, Kim DH, Ha J, Jin HJ, Kwon SJ, Chang JW, et al. Thrombospondin-2 secreted by human umbilical cord blood-derived mesenchymal stem cells promotes chondrogenic differentiation. Stem Cells. 2013;31:2136–48.

Article  CAS  PubMed  Google Scholar 

Shin K, Cha Y, Ban YH, Seo DW, Choi EK, Park D, et al. Anti-osteoarthritis effect of a combination treatment with human adipose tissue-derived mesenchymal stem cells and thrombospondin 2 in rabbits. World J Stem Cells. 2019;11:1115–29.

Article  PubMed  PubMed Central  Google Scholar 

Wang S, Hu T, Wang Z, Li N, Zhou L, Liao L, et al. Macroglia-derived thrombospondin 2 regulates alterations of presynaptic proteins of retinal neurons following elevated hydrostatic pressure. PLoS One. 2017;12: e0185388.

Article  PubMed  PubMed Central  Google Scholar 

Hayden MS, Ghosh S. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012;26:203–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-kappaB: its role in health and disease. J Mol Med (Berl). 2004;82:434–48.

Article  CAS  PubMed  Google Scholar 

Caron MM, Emans PJ, Surtel DA, Cremers A, Voncken JW, Welting TJ, et al. Activation of NF-κB/p65 facilitates early chondrogenic differentiation during endochondral ossification. PLoS One. 2012;7: e33467.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu JF, Chen PC, Chang TM, Hou CH. Thrombospondin-2 stimulates MMP-9 production and promotes osteosarcoma metastasis via the PLC, PKC, c-Src and NF-κB activation. J Cell Mol Med. 2020;24:12826–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan BK, Adya R, Chen J, Farhatullah S, Heutling D, Mitchell D, et al. Metformin decreases angiogenesis via NF-kappaB and Erk1/2/Erk5 pathways by increasing the antiangiogenic thrombospondin-1. Cardiovasc Res. 2009;83:566–74.

Article  CAS  PubMed  Google Scholar 

De Stefano D, Nicolaus G, Maiuri MC, Cipolletta D, Galluzzi L, Cinelli MP, et al. NF-kappaB blockade upregulates Bax, TSP-1, and TSP-2 expression in rat granulation tissue. J Mol Med (Berl). 2009;87:481–92.

Article  CAS  PubMed  Google Scholar 

Hahn C, Orr AW, Sanders JM, Jhaveri KA, Schwartz MA. The subendothelial extracellular matrix modulates JNK activation by flow. Circ Res. 2009;104:995–1003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shan S, Fang B, Zhang Y, Wang C, Zhou J, Niu C, et al. Mechanical stretch promotes tumoricidal M1 polarization via the FAK/NF-κB signaling pathway. FASEB J. 2019;33:13254–66.

Article  CAS  PubMed  Google Scholar 

Cheng B, Liu Y, Zhao Y, Li Q, Liu Y, Wang J, et al. The role of anthrax toxin protein receptor 1 as a new mechanosensor molecule and its mechanotransduction in BMSCs under hydrostatic pressure. Sci Rep. 2019;9:12642–52.

Article  PubMed  PubMed Central  Google Scholar 

Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012;338:917–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hodgkinson T, Kelly DC, Curtin CM, O’Brien FJ. Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat Rev Rheumatol. 2022;18:67–84.

Article  PubMed  Google Scholar 

Kefauver JM, Ward AB, Patapoutian A. Discoveries in structure and physiology of mechanically activated ion channels. Nature. 2020;587:567–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith RM, Reilly GC. Mesenchymal stem cell responses to mechanical stimuli. Muscles Ligaments Tendons J. 2012;2:169–80.

Google Scholar 

Luo L, Foster NC, Man KL, Brunet M, Hoey DA, Cox SC, et al. Hydrostatic pressure promotes chondrogenic differentiation and microvesicle release from human embryonic and bone marrow stem cells. Biotechnol J. 2022;17:e2100401.

Article  PubMed  Google Scholar 

Zeng Y, Feng S, Liu W, Fu Q, Li Y, Li X, et al. Preconditioning of mesenchymal stromal cells toward nucleus pulposus-like cells by microcryogels-based 3D cell culture and syringe-based pressure loading system. J Biomed Mater Res B Appl Biomater. 2017;105:507–20.

Article  CAS  PubMed  Google Scholar 

Yue D, Zhang M, Lu J, Zhou J, Bai Y, Pan J. The rate of fluid shear stress is a potent regulator for the differentiation of mesenchymal stem cells. J Cell Physiol. 2019;234:16312–9.

Article  CAS  PubMed  Google Scholar 

Zhang M, Ono T, Chen Y, Lv X, Wu S, Song H, et al. Effects of condylar elastic properties to temporomandibular joint stress. J Biomed Biotechnol. 2009;2009:509848.

Article  PubMed  PubMed Central  Google Scholar 

Zhao YH, Lv X, Liu YL, Zhao Y, Li Q, Chen YJ, et al. Hydrostatic pressure promotes the proliferation and osteogenic/chondrogenic differentiation of mesenchymal stem cells: The roles of RhoA and Rac1. Stem Cell Res. 2015;14:283–96.

Article  CAS  PubMed  Google Scholar 

Zhao Y, Yi FZ, Zhao YH, Chen YJ, Ma H, Zhang M. The distinct effects of estrogen and hydrostatic pressure on mesenchymal stem cells differentiation: involvement of estrogen receptor signaling. Ann Biomed Eng. 2016;44:2971–83.

Article  PubMed  Google Scholar 

Cheng B, Liu Y, Zhao Y, Li Q, Liu Y, Wang J, et al. The role of anthrax toxin protein receptor 1 as a new mechanosensor molecule and its mechanotransduction in BMSCs under hydrostatic pressure. Sci Rep. 2019;9:12642.

Article  PubMed  PubMed Central  Google Scholar 

Moran CJ, Pascual-Garrido C, Chubinskaya S, Potter HG, Warren RF, Cole BJ, et al. Restoration of articular cartilage. J Bone Joint Surg Am. 2014;96:336–44.

Article  PubMed  Google Scholar 

Zhou M, Lozano N, Wychowaniec JK, Hodgkinson T, Richardson SM, Kostarelos K, et al. Graphene oxide: a growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels. Acta Biomater. 2019;96:271–80.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif