An optimized force-triggered density gradient sedimentation method for isolation of pelage follicle dermal papilla cells from neonatal mouse skin

Chen C, Huang W, Wang EHC, Tai K, Lin S. Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration. J Biomed Sci. 2020;27(1):43.

Article  PubMed  PubMed Central  Google Scholar 

Harland DP. Introduction to hair development. Adv Exp Med Biol. 2018;1054:89–96.

Article  CAS  PubMed  Google Scholar 

Ge W, Tan S, Wang S, Li L, Sun X, Shen W, et al. Single-cell transcriptome profiling reveals dermal and epithelial cell fate decisions during embryonic hair follicle development. Theranostics. 2020;10(17):7581–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang C, Cotsarelis G. Review of hair follicle dermal cells. J Dermatol Sci. 2010;57(1):2–11.

Article  PubMed  PubMed Central  Google Scholar 

Nuutila K. Hair follicle transplantation for wound repair. Adv Wound Care. 2021;10(3):153–63.

Article  Google Scholar 

Zhu K, Xu C, Liu M, Zhang J. Hairless controls hair fate decision via Wnt/β–catenin signaling. Biochem Bioph Res Co. 2017;491(3):567–70.

Article  CAS  Google Scholar 

Xu W. Cyclosporine A stimulated hair growth from mouse vibrissae follicles in an organ culture model. J Biomed Res. 2012;26(5):372–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asgari AZ, Rufaut NW, Morrison WA, Dilley RJ, Knudsen R, Jones LN, et al. Hair transplantation in mice: challenges and solutions. Wound Repair Regen. 2016;24(4):679–85.

Article  PubMed  Google Scholar 

Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001;104(2):233–45.

Article  CAS  PubMed  Google Scholar 

Saxena N, Mok KW, Rendl M. An updated classification of hair follicle morphogenesis. Exp Dermatol. 2019;28(4):332–44.

Article  PubMed  PubMed Central  Google Scholar 

Mesa KR, Rompolas P, Zito G, Myung P, Sun TY, Brown S, et al. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature. 2015;522(7554):94–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rompolas P, Mesa KR, Greco V. Spatial organization within a niche as a determinant of stem-cell fate. Nature. 2013;502(7472):513–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deschene ER, Myung P, Rompolas P, Zito G, Sun TY, Taketo MM, et al. β-catenin activation regulates tissue growth non-cell autonomously in the hair stem cell niche. Science. 2014;343(6177):1353–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Limbu S, Higgins CA. Isolating dermal papilla cells from human hair follicles using microdissection and enzyme digestion. Methods Mol Biol (Clifton, NJ). 2020;2154:91–103.

Article  CAS  Google Scholar 

Rezza A, Wang Z, Sennett R, Qiao W, Wang D, Heitman N, et al. Signaling networks among stem cell precursors, transit-amplifying progenitors, and their niche in developing hair follicles. Cell Rep. 2016;14(12):3001–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madaan A, Verma R, Singh AT, Jaggi M. Review of Hair Follicle Dermal Papilla cells asin vitro screening model for hair growth. Int J Cosmet Sci. 2018;40(5):429–50.

Article  CAS  PubMed  Google Scholar 

Taghiabadi E, Nilforoushzadeh MA, Aghdami N. Maintaining hair inductivity in human dermal papilla cells: a review of effective methods. Skin Pharmacol Phys. 2020;33(5):280–92.

Article  CAS  Google Scholar 

Lei M, Yang L, Chuong C. Getting to the core of the dermal papilla. J Invest Dermatol. 2017;137(11):2250–3.

Article  CAS  PubMed  Google Scholar 

Houschyar KS, Borrelli MR, Tapking C, Popp D, Puladi B, Ooms M, et al. Molecular mechanisms of hair growth and regeneration: current understanding and novel paradigms. Dermatology. 2020;236(4):271–80.

Article  PubMed  Google Scholar 

Gan Y, Wang H, Du L, Fan Z, Sun P, Li K, et al. Ficoll density gradient sedimentation isolation of pelage hair follicle mesenchymal stem cells from adult mouse back skin: a novel method for hair follicle mesenchymal stem cells isolation. Stem Cell Res Ther. 2022;13(1):372.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romano A, Palumbo GA, Parrinello NL, Conticello C, Martello M, Terragna C. Minimal residual disease assessment within the bone marrow of multiple myeloma: a review of caveats, clinical significance and future perspectives. Front Oncol. 2019;9:699.

Article  PubMed  PubMed Central  Google Scholar 

Yoo CE, Moon H, Kim YJ, Park J, Park D, Han K, et al. Highly dense, optically inactive silica microbeads for the isolation and identification of circulating tumor cells. Biomaterials. 2016;75:271–8.

Article  CAS  PubMed  Google Scholar 

Jia Y, Xu H, Li Y, Wei C, Guo R, Wang F, et al. A modified ficoll-paque gradient method for isolating mononuclear cells from the peripheral and umbilical cord blood of humans for biobanks and clinical laboratories. Biopreserv Biobank. 2018;16(2):82–91.

Article  CAS  PubMed  Google Scholar 

Tan YS, Lei YL. Isolation of tumor-infiltrating lymphocytes by ficoll-paque density gradient centrifugation. Methods Mol Biol. 2019;1960:93–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue M, Jackson CJ. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv Wound Care. 2015;4(3):119–36.

Article  Google Scholar 

Couchman JR. Rat hair follicle dermal papillae have an extracellular matrix containing basement membrane components. J Invest Dermatol. 1986;87(6):762–7.

Article  CAS  PubMed  Google Scholar 

Hou C, Miao Y, Wang J, Wang X, Chen CY, Hu ZQ. Collagenase IV plays an important role in regulating hair cycle by inducing VEGF, IGF-1, and TGF-beta expression. Drug Des Devel Ther. 2015;9:5373–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naung NY, Suttapreyasri S, Kamolmatyakul S, Nuntanaranont T. Comparative study of different centrifugation protocols for a density gradient separation media in isolation of osteoprogenitors from bone marrow aspirate. J Oral Biol Craniofac Res. 2014;4(3):160–8.

Article  PubMed  PubMed Central  Google Scholar 

Mosca T, Forte WCN. Comparative efficiency and impact on the activity of blood neutrophils isolated by percoll, ficoll and spontaneous sedimentation methods. Immunol Invest. 2015;45(1):29–37.

Article  PubMed  Google Scholar 

Kong W, Chen L, Zheng J, Zhang H, Hu X, Zeng T, et al. Resveratrol supplementation restores high-fat diet-induced insulin secretion dysfunction by increasing mitochondrial function in islet. Exp Biol Med. 2015;240(2):220–9.

Article  CAS  Google Scholar 

Tezuka K, Toyoshima K, Tsuji T. Hair follicle regeneration by transplantation of a bioengineered hair follicle germ. Methods Mol Biol (Clifton, NJ). 2016;1453:71–84.

Article  CAS  Google Scholar 

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

Article  CAS  PubMed  Google Scholar 

Tsai S, Bouwman BA, Ang Y, Kim SJ, Lee D, Lemischka IR, et al. Single transcription factor reprogramming of hair follicle dermal papilla cells to induced pluripotent stem cells. Stem Cells. 2011;29(6):964–71.

Article  CAS  PubMed  Google Scholar 

Tsai S, Clavel C, Kim S, Ang Y, Grisanti L, Lee D, et al. Oct4 and Klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Stem Cells. 2010;28(2):221–8.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif