Potential advantages of genetically modified mesenchymal stem cells in the treatment of acute and chronic liver diseases

Roth GA, et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736–88.

Article  Google Scholar 

Byass P. The global burden of liver disease: a challenge for methods and for public health. BMC Med. 2014;12(1):1–3.

Article  Google Scholar 

Volarevic V, et al. Concise review: therapeutic potential of mesenchymal stem cells for the treatment of acute liver failure and cirrhosis. Stem cells. 2014;32(11):2818–23.

Article  CAS  PubMed  Google Scholar 

Karageorgos SA, et al. Long-term change in incidence and risk factors of cirrhosis and hepatocellular carcinoma in Crete, Greece: a 25-year study. Ann Gastroenterol. 2017;30(3):357.

PubMed  PubMed Central  Google Scholar 

Ge PS, Runyon BA. Treatment of patients with cirrhosis. N Engl J Med. 2016;375(8):767–77.

Article  CAS  PubMed  Google Scholar 

Zhu W, et al. Effects of xenogeneic adipose-derived stem cell transplantation on acute-on-chronic liver failure. Hepatobiliary Pancreat Dis Int. 2013;12(1):60–7.

Article  CAS  PubMed  Google Scholar 

Libo C, Zhen Y, Fazu Q. Studies on hepatocyte apoptosis, proliferation and oncogene c-fos expression in carbon tetrachloride-induced cirrhotic rat liver. J Tongji Med Univ. 1999;19(1):53–5.

Article  Google Scholar 

Sánchez-Valle V, et al. Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr Med Chem. 2012;19(28):4850–60.

Article  PubMed  Google Scholar 

Kung JW, Forbes SJ. Stem cells and liver repair. Curr Opin Biotechnol. 2009;20(5):568–74.

Article  CAS  PubMed  Google Scholar 

Zhang Z, Wang F-S. Stem cell therapies for liver failure and cirrhosis. J Hepatol. 2013;59(1):183–5.

Article  PubMed  Google Scholar 

Gramignoli R, et al. Clinical hepatocyte transplantation: practical limits and possible solutions. Eur Surg Res. 2015;54(3–4):162–77.

Article  CAS  PubMed  Google Scholar 

Cho KA, et al. Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Liver Int. 2011;31(7):932–9.

Article  CAS  PubMed  Google Scholar 

AdiwinataPawitan J. Exploring the most promising stem cell therapy in liver failure: a systematic review. Stem Cells Int. 2019;2019:1–15.

Article  Google Scholar 

Kwak K-A, et al. Current perspectives regarding stem cell-based therapy for liver cirrhosis. Can J Gastroenterol Hepatol. 2018;2018:1–19.

Article  Google Scholar 

Terai S, et al. Timeline for development of autologous bone marrow infusion (ABMi) therapy and perspective for future stem cell therapy. J Gastroenterol. 2012;47(5):491–7.

Article  PubMed  Google Scholar 

Amer M-EM, et al. Clinical and laboratory evaluation of patients with end-stage liver cell failure injected with bone marrow-derived hepatocyte-like cells. Eur J Gastroenterol Hepatol. 2011;23(10):936–41.

Article  PubMed  Google Scholar 

Terai S, et al. Status and prospects of liver cirrhosis treatment by using bone marrow-derived cells and mesenchymal cells. Tissue Eng Part B Rev. 2014;20(3):206–10.

Article  PubMed  Google Scholar 

Yang X, et al. Mesenchymal stem cell therapy for liver disease: full of chances and challenges. Cell Biosci. 2020;10(1):1–18.

Article  Google Scholar 

Si-Tayeb K, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010;51(1):297–305.

Article  CAS  PubMed  Google Scholar 

Hay DC, et al. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proc Natl Acad Sci. 2008;105(34):12301–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin L, Du L. The role of secreted factors in stem cells-mediated immune regulation. Cell Immunol. 2018;326:24–32.

Article  CAS  PubMed  Google Scholar 

Ma H-C, et al. Targeted migration of mesenchymal stem cells modified with CXCR4 to acute failing liver improves liver regeneration. World J Gastroenterol WJG. 2014;20(40):14884.

Article  CAS  PubMed  Google Scholar 

Delgado-Martín C, et al. Chemokine CXCL12 uses CXCR4 and a signaling core formed by bifunctional Akt, extracellular signal-regulated kinase (ERK) 1/2, and mammalian target of rapamycin complex 1 (mTORC1) proteins to control chemotaxis and survival simultaneously in mature dendritic cells. J Biol Chem. 2011;286(43):37222–36.

Article  PubMed  PubMed Central  Google Scholar 

Pawig L, et al. Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family: molecular perspectives. Front Immunol. 2015;6:429.

Article  PubMed  PubMed Central  Google Scholar 

Imitola J, et al. Directed migrationof neural stem cellsto sites of CNS injury by thestromal cell-derived factor1α/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci. 2004;101(52):18117–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Döring Y, et al. The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front Physiol. 2014;5:212.

PubMed  PubMed Central  Google Scholar 

Huh C-G, et al. Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci. 2004;101(13):4477–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Valdés-Arzate A, et al. Hepatocyte growth factor protects hepatocytes against oxidative injury induced by ethanol metabolism. Free Radic Biol Med. 2009;47(4):424–30.

Article  PubMed  Google Scholar 

Phaneuf D, Chen S-J, Wilson JM. Intravenous injection of an adenovirus encoding hepatocyte growth factor results in liver growth and has a protective effect against apoptosis. Mol Med. 2000;6(2):96–103.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giordano S, Columbano A. Met as a therapeutic target in HCC: facts and hopes. J Hepatol. 2014;60(2):442–52.

Article  CAS  PubMed  Google Scholar 

Wang H, et al. The function of the HGF/c-Met axis in hepatocellular carcinoma. Front Cell Dev Biol. 2020;8:55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birchmeier C, Gherardi E. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol. 1998;8(10):404–10.

Article  CAS  PubMed  Google Scholar 

Zhu C, et al. Gene transfer of c-met confers protection against D-galactosamine/lipopolysaccharide-induced acute liver failure. Dig Dis Sci. 2012;57(4):925–34.

Article  CAS  PubMed  Google Scholar 

Wang K, et al. Overexpression of c-Met in bone marrow mesenchymal stem cells improves their effectiveness in homing and repair of acute liver failure. Stem Cell Res Ther. 2017;8(1):1–10.

Article  Google Scholar 

Liu J, et al. HGF/c-Met signaling mediated mesenchymal stem cell-induced liver recovery in intestinal ischemia reperfusion model. Int J Med Sci. 2014;11(6):626.

Article  PubMed  PubMed Central  Google Scholar 

Chen J, et al. Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med. 2005;11(11):1188–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruvolo P, Deng X, May W. Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia. 2001;15(4):515–22.

Article  CAS  PubMed  Google Scholar 

Chang W, Song B-W, Hwang K-C. Mesenchymal stem cell survival in infarcted myocardium: adhesion and anti-death signals. In: Haya MA, editor. Stem cells and cancer stem cells, vol. 10. Springer; 2013. p. 35–43.

Chapter  Google Scholar 

Ma J, et al. Exosomes derived from AKt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Transl Med. 2017;6(1):51–9.

Article  CAS  PubMed  Google Scholar 

Takehara T, et al. Hepatocyte-specific disruption of Bcl-xL leads to continuous hepatocyte apoptosis and liver fibrotic responses. Gastroenterology. 2004;127(4):1189–97.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif