Immortalized erythroid cells as a novel frontier for in vitro blood production: current approaches and potential clinical application

Rigo A, Ferrarini I, Lorenzetto E, Darra E, Liparulo I, Bergamini C, et al. BID and the α-bisabolol-triggered cell death program: converging on mitochondria and lysosomes. Cell Death Dis. 2019;10:1–13.

Article  CAS  Google Scholar 

Stomper J, Rotondo JC, Greve G, Lübbert M. Hypomethylating agents (HMA) for the treatment of acute myeloid leukemia and myelodysplastic syndromes: mechanisms of resistance and novel HMA-based therapies. Leukemia. 2021;35:1873–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

WHO WHO. Blood safety and availability. Blood Saf Availab [Internet]. 2022 [cited 2022 Oct 31]; Available from: https://www.who.int/news-room/fact-sheets/detail/blood-safety-and-availability.

Jankite MK. Blood transfusion: cost, quality, and other considerations for the surgical management of the critically ill. Crit Care Nurs Q. 2019;42:173–6.

Article  PubMed  Google Scholar 

Greinacher A, Weitmann K, Schönborn L, Alpen U, Gloger D, Stangenberg W, et al. A population-based longitudinal study on the implication of demographic changes on blood donation and transfusion demand. Blood Adv. 2017;1:867–74.

Article  PubMed  PubMed Central  Google Scholar 

Peliganga LB, Mello VM, de Sousa PSF, Horta MAP, Soares ÁD, da Nunes JP, et al. Transfusion transmissible infections in blood donors in the province of bié angola, during a 15-year follow-up, imply the need for pathogen reduction technologies. Pathog. 2021;10:1633.

Article  CAS  Google Scholar 

Lee J, Abafogi AT, Oh S, Chang HE, Tepeng W, Lee D, et al. Molecular detection of bacterial contamination in plasma using magnetic-based enrichment. Sci Rep. 2022;12:1–8.

Google Scholar 

Contini C, Rotondo JC, Magagnoli F, Maritati M, Seraceni S, Graziano A, et al. Investigation on silent bacterial infections in specimens from pregnant women affected by spontaneous miscarriage. J Cell Physiol. 2018;234:100–7.

Article  PubMed  Google Scholar 

Ackfeld T, Schmutz T, Guechi Y, Le Terrier C. Blood transfusion reactions—a comprehensive review of the literature including a swiss perspective. J Clin Med. 2022;11:2859.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rotondo JC, Martini F, Maritati M, Caselli E, Gallenga CE, Guarino M, et al. Advanced molecular and immunological diagnostic methods to detect SARS-CoV-2 infection. Microorg. 2022;10:1193.

Article  CAS  Google Scholar 

Langhi DM, de Souza RC, Barros M, De Santis GC, Kashima SH, Bordin JO. SARS-COV-2: is it a risk for blood transfusion? Hematol Transfus Cell Ther. 2022;44:100–3.

Article  PubMed  Google Scholar 

Mazziotta C, Pellielo G, Tognon M, Martini F, Rotondo JC. Significantly low levels of IgG antibodies against oncogenic Merkel cell polyomavirus in sera from females affected by spontaneous abortion. Front Microbiol. 2021;12:789991.

Article  PubMed  PubMed Central  Google Scholar 

Peliganga LB, Mello VM, de Sousa PSF, Horta MAP, Soares ÁD, da Nunes JP, et al. Transfusion transmissible infections in blood donors in the province of Bié, Angola, during a 15-year follow-up, imply the need for pathogen reduction technologies. Pathogens. 2021;10:1633.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan AI, Gupta G. Non-infectious complications of blood transfusion. StatPearls [Internet]. StatPearls Publishing; 2022 [cited 2022 Oct 31]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK574536/.

Hudgins K, Carter E. Blood conservation: exploring alternatives to blood transfusions. Crit Care Nurs Q. 2019;42:187–91.

Article  PubMed  Google Scholar 

Daniels DE, Ferguson DCJ, Griffiths RE, Trakarnsanga K, Cogan N, MacInnes KA, et al. Reproducible immortalization of erythroblasts from multiple stem cell sources provides approach for sustainable RBC therapeutics. Mol Ther Methods Clin Dev. 2021;22:26–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tay SK, Hsu TY, Pavelyev A, Walia A, Kulkarni AS. Clinical and economic impact of school-based nonavalent human papillomavirus vaccine on women in Singapore: a transmission dynamic mathematical model analysis. BJOG An Int J Obstet Gynaecol. 2018;125:478–86.

Article  CAS  Google Scholar 

Dzierzak E, Philipsen S. Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med. 2013;3:a011601.

Article  PubMed  PubMed Central  Google Scholar 

Yamane T. Cellular basis of embryonic hematopoiesis and its implications in prenatal erythropoiesis. Int J Mol Sci. 2020;21:9346.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caulier AL, Sankaran VG. Molecular and cellular mechanisms that regulate human erythropoiesis. Blood. 2022;139:2450–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Notta F, Zandi S, Takayama N, Dobson S, Gan OI, Wilson G, et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science (80-). 2016;351:aab2116.

Article  Google Scholar 

Cheng H, Zheng Z, Cheng T. New paradigms on hematopoietic stem cell differentiation. Protein Cell. 2020;11:34–44.

Article  PubMed  Google Scholar 

Dulmovits BM, Hom J, Narla A, Mohandas N, Blanc L. Characterization, regulation, and targeting of erythroid progenitors in normal and disordered human erythropoiesis. Curr Opin Hematol. 2017;24:159.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palis J. Primitive and definitive erythropoiesis in mammals. Front Physiol. 2014;5:3.

Article  PubMed  PubMed Central  Google Scholar 

Mei Y, Liu Y, Ji P. Understanding terminal erythropoiesis: An update on chromatin condensation, enucleation, and reticulocyte maturation. Blood Rev. 2021;46:100740.

Article  CAS  PubMed  Google Scholar 

Li W, Guo R, Song Y, Jiang Z. Erythroblastic Island macrophages shape normal erythropoiesis and drive associated disorders in erythroid hematopoietic diseases. Front Cell Dev Biol. 2021;8:613885.

Article  PubMed  PubMed Central  Google Scholar 

May A, Forrester LM. The erythroblastic island niche: modeling in health, stress, and disease. Exp Hematol. 2020;91:10–21.

Article  CAS  PubMed  Google Scholar 

Menon V, Ghaffari S. Erythroid enucleation: a gateway into a “bloody” world. Exp Hematol. 2021;95:13–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji P. New Insights into the mechanisms of mammalian erythroid chromatin condensation and enucleation. Int Rev Cell Mol Biol. 2015;316:159–82.

Article  CAS  PubMed  Google Scholar 

Ji P, Murata-Hori M, Lodish HF. Formation of mammalian erythrocytes: chromatin condensation and enucleation. Trends Cell Biol. 2011;21:409–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ubukawa K, Goto T, Asanuma K, Sasaki Y, Guo YM, Kobayashi I, et al. Cdc42 regulates cell polarization and contractile actomyosin rings during terminal differentiation of human erythroblasts. Sci Rep. 2020;10:11806.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mazziotta C, Lanzillotti C, Gafà R, Touzé A, Durand M-A, Martini F, et al. The role of histone post-translational modifications in Merkel cell carcinoma. Front Oncol. 2022;0:578.

Google Scholar 

Rotondo JC, Mazziotta C, Lanzillotti C, Tognon M, Martini F. Epigenetic dysregulations in merkel cell polyomavirus-driven merkel cell carcinoma. Int J Mol Sci. 2021;22:11464.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jayapal SR, Lee KL, Ji P, Kaldis P, Lim B, Lodish HF. Down-regulation of Myc is essential for terminal erythroid maturation. J Biol Chem. 2010;285:40252–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu J, Guo X, Mohandas N, Chasis JA, An X. Membrane remodeling during reticulocyte maturation. Blood. 2010;115:2021–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGrath KE, Kingsley PD, Koniski AD, Porter RL, Bushnell TP, Palis J. Enucleation of primitive erythroid cells generates a transient population of “pyrenocytes” in the mammalian fetus. Blood. 2008;111:2409–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshida H, Kawane K, Koike M, Mori Y, Uchiyama Y, Nagata S. Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature. 2005;437:754–8.

Article  CAS  PubMed  Google Scholar 

Da Costa L, Mohandas N, Sorette M, Grange MJ, Tchernia G, Cynober T. Temporal differences in membrane loss lead to distinct reticulocyte features in hereditary spherocytosis and in immune hemolytic anemia. Blood. 2001;98:2894–9.

Article  PubMed  Google Scholar 

Stevens-Hernandez CJ, Bruce LJ, Reticulocyte M, Stevens-Hernandez CJ, Bruce LJ. Reticulocyte maturati

留言 (0)

沒有登入
gif