Maternal dendritic cells influence fetal allograft response following murine in-utero hematopoietic stem cell transplantation

Mattar CN, Biswas A, Choolani M, Chan JK. The case for intrauterine stem cell transplantation. Best Pract Res Clin Obstet Gynaecol. 2012;26(5):683–95.

Article  PubMed  Google Scholar 

Troeger C, Surbek D, Schoberlein A, Schatt S, Dudler L, Hahn S, et al. In utero haematopoietic stem cell transplantation. Experiences in mice, sheep and humans. Swiss Med Wkly. 2007;137(Suppl 155):14S-9S.

PubMed  Google Scholar 

Merianos D, Heaton T, Flake AW. In utero hematopoietic stem cell transplantation: progress toward clinical application. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2008;14(7):729–40.

Article  Google Scholar 

Shields LE, Gaur L, Delio P, Potter J, Sieverkropp A, Andrews RG. Fetal immune suppression as adjunctive therapy for in utero hematopoietic stem cell transplantation in nonhuman primates. Stem Cells. 2004;22(5):759–69.

Article  PubMed  Google Scholar 

Dighe NM, Tan KW, Tan LG, Shaw SSW, Buckley SMK, Sandikin D, et al. A comparison of intrauterine hemopoietic cell transplantation and lentiviral gene transfer for the correction of severe beta-thalassemia in a HbbTh3/+ murine model. Exp Hematol. 2018;62:45–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeanty C, Derderian SC, Mackenzie TC. Maternal-fetal cellular trafficking: clinical implications and consequences. Curr Opin Pediatr. 2014;26(3):377–82.

Article  PubMed  PubMed Central  Google Scholar 

Bianchi D, Robert E, Gross Lecture. Fetomaternal cell trafficking: a story that begins with prenatal diagnosis and may end with stem cell therapy. J Pediatr Surg. 2007;42(1):12–8.

Article  PubMed  Google Scholar 

Kandasamy K, Tan LG, B Johana N, Tan YW, Foo W, Yeo JSL, et al. Maternal microchimerism and cell-mediated immune-modulation enhance engraftment following semi-allogenic intrauterine transplantation. FASEB J. 2021;35(3):e21413.

Article  CAS  PubMed  Google Scholar 

Nijagal A, Wegorzewska M, Jarvis E, Le T, Tang Q, MacKenzie TC. Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice. J Clin Invest. 2011;121(2):582–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Merianos DJ, Tiblad E, Santore MT, Todorow CA, Laje P, Endo M, et al. Maternal alloantibodies induce a postnatal immune response that limits engraftment following in utero hematopoietic cell transplantation in mice. J Clin Invest. 2009;119(9):2590–600.

CAS  PubMed  PubMed Central  Google Scholar 

Wegorzewska M, Nijagal A, Wong CM, Le T, Lescano N, Tang Q, et al. Fetal intervention increases maternal T cell awareness of the foreign conceptus and can lead to immune-mediated fetal demise. J Immunol. 2014;192(4):1938–45.

Article  CAS  PubMed  Google Scholar 

Bizargity P, Bonney EA. Dendritic cells: a family portrait at mid-gestation. Immunology. 2009;126(4):565–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moreau A, Varey E, Bouchet-Delbos L, Cuturi M-C. Cell therapy using tolerogenic dendritic cells in transplantation. Transplant Res. 2012;1(1):13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silva Pde M, Bier J, Paiatto LN, Galdino Albuquerque C, Lopes Souza C, Fernandes LG, et al. Tolerogenic dendritic cells on transplantation: immunotherapy based on second signal blockage. J Immunol Res. 2015;2015: 856707.

PubMed  Google Scholar 

Sichien D, Lambrecht BN, Guilliams M, Scott CL. Development of conventional dendritic cells: from common bone marrow progenitors to multiple subsets in peripheral tissues. Mucosal Immunol. 2017;10(4):831–44.

Article  CAS  PubMed  Google Scholar 

Manicassamy S, Pulendran B. Dendritic cell control of tolerogenic responses. Immunol Rev. 2011;241(1):206–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, et al. Differential antigen processing by dendritic cell subsets in vivo. Science. 2007;315(5808):107–11.

Article  CAS  PubMed  Google Scholar 

Brocker T, Riedinger M, Karjalainen K. Driving gene expression specifically in dendritic cells. Adv Exp Med Biol. 1997;417:55–7.

Article  CAS  PubMed  Google Scholar 

Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, et al. Differential antigen processing by dendritic cell subsets in vivo. Science. 2007;315(5808):107–11.

Article  CAS  PubMed  Google Scholar 

Coombes JL, Siddiqui KR, Arancibia-Cárcamo CV, Hall J, Sun CM, Belkaid Y, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007;204(8):1757–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGovern N, Shin A, Low G, Low D, Duan K, Yao LJ, et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature. 2017;546(7660):662–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishra A, Lai GC, Yao LJ, Aung TT, Shental N, Rotter-Maskowitz A, et al. Microbial exposure during early human development primes fetal immune cells. Cell. 2021;184(13):3394-409.e20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cruz FM, Colbert JD, Merino E, Kriegsman BA, Rock KL. The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC-I molecules. Annu Rev Immunol. 2017;35(1):149–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology. 2018;154(1):3–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol. 2014;14(8):571–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ewels P, Hammarén R, Peltzer A, Moreno D, Garcia M, rfenouil, et al. nf-core/rnaseq: nf-core/rnaseq version 1.4.2 (1.4.2). 1.4.2 ed: Zenodo; 2019.

McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40(10):4288–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.

Article  CAS  PubMed  Google Scholar 

da Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.

Article  PubMed  Google Scholar 

da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.

Article  CAS  PubMed  Google Scholar 

Bolotin DA, Poslavsky S, Davydov AN, Frenkel FE, Fanchi L, Zolotareva OI, et al. Antigen receptor repertoire profiling from RNA-seq data. Nat Biotechnol. 2017;35(10):908–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva EV, et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods. 2015;12(5):380–1.

Article  CAS  PubMed  Google Scholar 

Shugay M, Bagaev DV, Turchaninova MA, Bolotin DA, Britanova OV, Putintseva EV, et al. VDJtools: unifying post-analysis of T cell receptor repertoires. PLoS Comput Biol. 2015;11(11): e1004503.

Article  PubMed  PubMed Central  Google Scholar 

Hochweller K, Striegler J, Hämmerling GJ, Garbi N. A novel CD11c.DTR transgenic mouse for depletion of dendritic cells reveals their requirement for homeostatic proliferation of natural killer cells. Eur J Immunol. 2008;38(10):2776–83.

Article  CAS  PubMed  Google Scholar 

Abdoli R, Najafian N. T helper cells fate mapping by co-stimulatory molecules and its functions in allograft rejection and tolerance. Int J Organ Transplant Med. 2014;5(3):97–110.

CAS  PubMed  PubMed Central  Google Scholar 

van Leeuwen-Kerkhoff N, Lundberg K, Westers TM, Kordasti S, Bontkes HJ, Lindstedt M, et al. Human bone marrow-derived myeloid dendritic cells show an immature transcriptional and functional profile compared to their peripheral blood counterparts and separate from slan+ non-classical monocytes. Front Immunol. 2018;9:1619.

Article  PubMed  PubMed Central  Google Scholar

留言 (0)

沒有登入
gif