Cerebrospinal fluid CD14++CD16+ monocytes in HIV-1 subtype C compared with subtype B

Albini A, Benelli R, Giunciuglio D, Cai T, Mariani G, Ferrini S, Noonan D (1998) Identification of a novel domain of HIV tat involved in monocyte chemotaxis. J Biol Chem 273:15895–15900

Article  CAS  PubMed  Google Scholar 

Amundson B, Lai L, Mulligan MJ, Xu Y, Zheng Z, Kundu S, Lennox JL, Waldrop-Valverde D, Franklin D, Swaims-Kohlmeier A, Letendre SL, Anderson AM (2020) Distinct cellular immune properties in cerebrospinal fluid are associated with cognition in HIV-infected individuals initiating antiretroviral therapy. J Neuroimmunol 344:577246

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ancuta P, Rao R, Moses A, Mehle A, Shaw SK, Luscinskas FW, Gabuzda D (2003) Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J Exp Med 197:1701–1707

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ancuta P, Liu KY, Misra V, Wacleche VS, Gosselin A, Zhou X, Gabuzda D (2009) Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16− monocyte subsets. BMC Genom 10:403

Article  Google Scholar 

Auffray C, Sieweke MH, Geissmann F (2009) Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27:669–692

Article  CAS  PubMed  Google Scholar 

Avalos CR, Price SL, Forsyth ER, Pin JN, Shirk EN, Bullock BT, Queen SE, Li M, Gellerup D, O’Connor SL, Zink MC, Mankowski JL, Gama L, Clements JE (2016) Quantitation of productively infected monocytes and macrophages of simian immunodeficiency virus-infected macaques. J Virol 90:5643–5656

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bansal AK, Mactutus CF, Nath A, Maragos W, Hauser KF, Booze RM (2000) Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat striatum. Brain Res 879:42–49

Article  CAS  PubMed  Google Scholar 

Beall CJ, Mahajan S, Kuhn DE, Kolattukudy PE (1996) Site-directed mutagenesis of monocyte chemoattractant protein-1 identifies two regions of the polypeptide essential for biological activity. Biochem J 313:633–640

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, Espevik T, Ziegler-Heitbrock L (2002) The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol 168:3536–3542

Article  CAS  PubMed  Google Scholar 

Bennasser Y, Bahraoui E (2002) HIV-1 Tat protein induces interleukin-10 in human peripheral blood monocytes, involvement of protein kinase C-beta II and -delta. FASEB J 16:546–554

Article  CAS  PubMed  Google Scholar 

Bielekova B, Pranzatelli MR (2017) Promise, Progress, and Pitfalls in the Search for Central Nervous System Biomarkers in Neuroimmunological Diseases: A Role for Cerebrospinal Fluid Immunophenotyping. Semin Pediatr Neurol 24:229–239

Article  PubMed  PubMed Central  Google Scholar 

Boyette LB, Macedo C, Hadi K, Elinoff BD, Walters JT, Ramaswami B, Chalasani G, Taboas JM, Lakkis FG, Metes DM (2017) Phenotype, function, and differentiation potential of human monocyte subsets. PLoS ONE 12(4):e0176460

Article  PubMed  PubMed Central  Google Scholar 

Brasil (2018) Ministério da Saúde. Programa Nacional de DST/AIDS. http://www.aids.gov.br/assistencia/manualdst/item12.htm. Accessed 01 Oct 2022

Buckner CM, Calderon TM, Willams DW, Belbin TJ, Berman JW (2011) Characterization of monocyte maturation/differentiation that facilitates their transmigration across the blood-brain barrier and infection by HIV: implications for NeuroAIDS. Cell Immunol 267:109–123

Article  CAS  PubMed  Google Scholar 

Burdo TH, Soulas C, Orzechowski K, Button J, Krishnan A, Sugimoto C, Alvarez X, Kuroda MJ, Williams KC (2010) Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma. PLoS Pathog 6:e1000842

Article  PubMed  PubMed Central  Google Scholar 

Buscemi L, Ramonet D, Geiger JD (2007) Human immunodeficiency virus type-1 protein Tat induces tumor necrosis factor-alpha-mediated neurotoxicity. Neurobiol Dis 26:661–670

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buscher K, Marcovecchio P, Hedrick CC, Ley K (2017) Patrolling mechanics of non-classical monocytes in vascular inflammation. Front Cardiovasc Med 4:80

Article  PubMed  PubMed Central  Google Scholar 

Campbell JH, Hearps AC, Martin GE, Williams KC, Crowe SM (2014) The importance of monocytes and macrophages in HIV pathogenesis, treatment, and cure. AIDS 28:2175–2187

Article  CAS  PubMed  Google Scholar 

Chen P, Mayne M, Power C, Nath A (1997) The Tat protein of HIV-1 induces tumor necrosis factor-alpha production. Implications for HIV-1-associated neurological diseases. J Biol Chem 272:22385–22388

Article  CAS  PubMed  Google Scholar 

Chimen M, Yates CM, McGettrick HM, Ward LS, Harrison MJ, Apta B, Dib LH, Imhof BA, Harrison P, Nash GB, Rainger GE (2017) Monocyte subsets coregulate inflammatory responses by integrated signaling through TNF and IL-6 at the endothelial cell interface. J Immunol 198:2834–2843

Article  CAS  PubMed  PubMed Central  Google Scholar 

Churchill MJ, Gorry PR, Cowley D, Lal L, Sonza S, Purcell DF, Thompson KA, Gabuzda D, McArthur JC, Pardo CA, Wesselingh SL (2006) Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J Neurovirol 12:146–152

Article  PubMed  Google Scholar 

Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO (1998) Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS de dementia. Proc Natl Acad Sci USA 95:3117–3121

Article  CAS  PubMed  PubMed Central  Google Scholar 

Craig FE, Ohori NP, Gorrill TS, Swerdlow SH (2011) Flow cytometric immunophenotyping of cerebrospinal fluid specimens. Am J Clin Pathol 135:22–34

Article  PubMed  Google Scholar 

de Almeida SM, Ribeiro CE, de Pereira AP, Badiee J, Cherner M, Smith D, Maich I, Raboni SM, Rotta I, Barbosa FJ, Heaton RK, Umlauf A, Ellis RJ (2013) Neurocognitive impairment in HIV-1 clade C- versus B-infected individuals in Southern Brazil. J Neurovirol 19:550–556

Article  PubMed  PubMed Central  Google Scholar 

de Almeida SM, Rotta I, Jiang Y, Li X, Raboni SM, Ribeiro CE, Smith D, Potter M, Vaida F, Letendre S, Ellis RJ (2016) Biomarkers of chemotaxis and inflammation in cerebrospinal fluid and serum in individuals with HIV-1 subtype C versus B. J Neurovirol 22:715–724

Article  PubMed  PubMed Central  Google Scholar 

de Almeida SM, Rotta I, de Pereira AP, Tang B, Umlauf A, Ribeiro CEL, Letendre S, Ellis RJ (2020) Cerebrospinal fluid pleocytosis as a predictive factor for CSF and plasma HIV RNA discordance and escape. J Neurovirol 26:241–251

Article  PubMed  PubMed Central  Google Scholar 

de Almeida SM, Rotta I, Vidal LRR, Dos Santos JS, Nath A, Johnson K, Letendre S, Ellis RJ (2021a) HIV-1C and HIV-1B Tat protein polymorphism in Southern Brazil. J Neurovirol 27:126–136

Article  PubMed  PubMed Central  Google Scholar 

de Almeida SM, Rotta I, Tang B, Vaida F, Letendre S, Ellis RJ (2021b) IgG intrathecal synthesis in HIV-associated neurocognitive disorder (HAND) according to the HIV-1 subtypes and pattern of HIV RNA in CNS and plasma compartments. J Neuroimmunology 355:577542

Article  Google Scholar 

de Almeida SM, Beltrame MP, Tang B, Rotta I, Schluga Y, Justus JLP, da Rocha MT, Abramson I, Vaida F, Schrier R, Ellis RJ (2022a) Main lymphocyte subpopulations in cerebrospinal fluid and peripheral blood in HIV-1 subtypes C and B. J Neurovirol 28:291–304

Article  PubMed  Google Scholar 

de Almeida SM, Tang B, Vaida F, Letendre S, Ellis RJ (2022) Soluble CD14 is subtype-dependent in serum but not in cerebrospinal fluid in people with HIV. J Neuroimmunol 366:577845

Article  PubMed  Google Scholar 

de Almeida SM, Rotta I, Tang B, Umlauf A, Vaida F, Cherner M, Franklin D, Letendre S, Ellis RJ (2022c) Higher cerebrospinal fluid soluble urokinase-type plasminogen activator receptor, but not interferon γ-inducible protein 10, correlate with higher working memory deficits. J Acquir Immune Defic Syndr 90:106–114

Article  PubMed  PubMed Central  Google Scholar 

de Graaf MT, Smitt PA, Luitwieler RL, van Velzen C, van den Broek PD, Kraan J, Gratama JW (2011) Central memory CD4+ T cells dominate the normal cerebrospinal fluid. Cytometry B Clin Cytom 80:43–50

Article  PubMed  Google Scholar 

Ellery PJ, Tippett E, Chiu YL, Paukovics G, Cameron PU, Solomon A, Lewin SR, Gorry PR, Jaworowski A, Greene WC, Sonza S, Crowe SM (2007) The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J Immunol 178:6581–6589

Article  CAS  PubMed  Google Scholar 

Fischer-Smith T, Croul S, Sverstiuk AE, Capini C, L’Heureux D, Regulier EG, Richardson MW, Amini S, Morgello S, Khalili K, Rappaport J (2001) CNS invasion by CD14+/CD16+ peripheral blood-derived monocytes in HIV dementia: perivascular accumulation and reservoir of HIV infection. J Neurovirol 7:528–541

Article  CAS  PubMed  Google Scholar 

Gama L, Abreu CM, Shirk EN, Price SL, Li M, Laird GM, Pate KA, Wietgrefe SW, O’Connor SL, Pianowski L, Haase AT, Van Lint C, Siliciano RF, Clements JE, LRA-SIV Study Group (2017) Reactivation of simian immunodeficiency virus reservoirs in the brain of virally suppressed macaques. AIDS 31:5–14

Article  Google Scholar 

Gandhi N, Saiyed Z, Thangavel S, Rodriguez J, Rao KV, Nair MP (2009) Differential effects of HIV type 1 clade B and clade C Tat protein on expression of proinflammato

留言 (0)

沒有登入
gif