Association of MLL3 and TGF-β signaling gene polymorphisms with the susceptibility and prognostic outcomes of Stanford type B aortic dissection

Fletcher AJ, Syed MBJ, Aitman TJ, Newby DE, Walker NL. Inherited thoracic aortic disease: New Insights and translational targets. Circulation. 2020;141:1570–87.

Article  PubMed  PubMed Central  Google Scholar 

Silaschi M, Byrne J, Wendler O. Aortic dissection: Medical, Interventional and Surgical Management. Heart. 2017;103:78–87.

Article  PubMed  Google Scholar 

Elefteriades JA, Hatzaras I, Tranquilli MA, Elefteriades AJ, Stout R, Shaw RK, Silverman D, Barash P. Weight lifting and rupture of silent aortic aneurysms. JAMA. 2003;290:2803.

Article  CAS  PubMed  Google Scholar 

Hatzaras I, Tranquilli M, Coady M, Barrett PM, Bible J, Elefteriades JA. Weightlifting and aortic dissection: more evidence for a connection. Cardiology. 2007;107:103–6.

Article  CAS  PubMed  Google Scholar 

Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352:337–9.

Article  CAS  PubMed  Google Scholar 

Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 2003;33:407–11.

Article  CAS  PubMed  Google Scholar 

He R, Guo DC, Sun W, Papke CL, Duraisamy S, Estrera AL, Safi HJ, Ahn C, Buja LM, Arnett FC, Zhang JW, Geng Y-J, Milewicz DM. Characterization of the inflammatory cells in ascending thoracic aortic aneurysms in patients with Marfan syndrome, familial thoracic aortic aneurysms, and sporadic aneurysms. J Thorac Cardiovasc Surg. 2008;136:922–9.

Article  PubMed  PubMed Central  Google Scholar 

Radonic T, de Witte P, Groenink M, de Waard V, Lutter R, van Eijk M, Jansen M, Timmermans J, Kempers M, Scholte AJ, Hilhorst-Hofstee Y, van den Berg MP, van Tintelen JP, Pals G, Baars MJH, Mulder BJM, Zwinderman AH. Inflammation aggravates disease severity in Marfan syndrome patients. PLoS ONE. 2012;7:e32963.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lindsay ME, Dietz HC. Lessons on the pathogenesis of aneurysm from heritable conditions. Nature. 2011;473:308–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gomez D, Coyet A, Ollivier V, Jeunemaitre X, Jondeau G, Michel J-B, Vranckx R. Epigenetic control of vascular smooth muscle cells in Marfan and non-marfan thoracic aortic aneurysms. Cardiovasc Res. 2011;89:446–56.

Article  CAS  PubMed  Google Scholar 

Lakshmi SP, Reddy AT, Reddy RC. Transforming growth factor β suppresses peroxisome proliferator-activated receptor γ expression via both SMAD binding and novel TGF-β inhibitory elements. Biochem J. 2017;474:1531–46.

Article  CAS  PubMed  Google Scholar 

Pannu H, Fadulu VT, Chang J, Lafont A, Hasham SN, Sparks E, Giampietro PF, Zaleski C, Estrera AL, Safi HJ, Shete S, Willing MC, Raman CS, Milewicz DM. Mutations in transforming growth factor-beta receptor type II cause familial thoracic aortic aneurysms and dissections. Circulation. 2005;112:513–20.

Article  CAS  PubMed  Google Scholar 

Lerner-Ellis JP, Aldubayan SH, Hernandez AL, Kelly MA, Stuenkel AJ, Walsh J, Joshi VA. The spectrum of FBN1, TGFβR1, TGFβR2 and ACTA2 variants in 594 individuals with suspected Marfan Syndrome, Loeys-Dietz syndrome or thoracic aortic aneurysms and dissections (TAAD). Mol Genet Metab. 2014;112:171–6.

Article  CAS  PubMed  Google Scholar 

Leutermann R, Sheikhzadeh S, Brockstädt L, Rybczynski M, van Rahden V, Kutsche K, von Kodolitsch Y, Rosenberger G. A 1-bp duplication in TGFB2 in Three Family Members with a syndromic form of thoracic aortic aneurysm. Eur J Hum Genet. 2014;22:944–8.

Article  CAS  PubMed  Google Scholar 

Takeda N, Hara H, Fujiwara T, Kanaya T, Maemura S, Komuro I. TGF-β signaling-related genes and thoracic aortic aneurysms and dissections. Int J Mol Sci. 2018;19:2125.

Article  PubMed  PubMed Central  Google Scholar 

Li B, Feng C, Zhu S, Zhang J, Irwin DM, Zhang X, Wang Z, Zhang S. Identification of candidate circular RNAs underlying intramuscular Fat Content in the Donkey. Front Genet. 2020 Dec;9:11:587559.

Lee J, Saha PK, Yang QH, Lee S, Park JY, Suh Y, Lee SK, Chan L, Roeder RG, Lee JW. Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc Natl Acad Sci U S A. 2008;105:19229–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim DH, Kim J, Lee JW. Requirement for MLL3 in p53 regulation of hepatic expression of small heterodimer partner and bile acid homeostasis. Mol Endocrinol. 2011;25:2076–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan Q, Xie X, Fu Z, Ma X, Yang Y, Huang D, Liu F, Dai C, Ma Y. Association of the histone-lysine N-methyltransferase MLL5 gene with coronary artery disease in chinese Han people. Meta Gene. 2014;2:514–24.

Article  PubMed  PubMed Central  Google Scholar 

Harrison SC, Holmes MV, Burgess S, Asselbergs FW, Jones GT, Baas AF, van ‘t Hof FN, de Bakker P, Blankensteijn JD, Powell JT, Saratzis A, de Borst GJ, Swerdlow DI, van der Graaf Y, van Rij AM, Carey DJ, Elmore JR, Tromp G, Kuivaniemi H, Sayers RD, Samani NJ, Bown MJ, Humphries SE. Genetic association of lipids and lipid drug targets with abdominal aortic aneurysm: a Meta-analysis. JAMA Cardiol. 2018;3:26–33.

Article  PubMed  Google Scholar 

Lee S, Lee J, Lee SK, Lee JW. Activating signal cointegrator-2 is an essential adaptor to recruit histone H3 lysine 4 methyltransferases MLL3 and MLL4 to the liver X receptors. Mol Endocrinol. 2008;22:1312–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lai BB, Lee JE, Jang YH, Wang LF, Peng WQ, Ge K. MLL3/MLL4 are required for CBP/p300 binding on enhancers and Super-Enhancer formation in brown adipogenesis. Nucleic Acids Res. 2017;45:6388–403.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu Y, Boer JM, Barsova RM, Favorova O, Goel A, Muller M, Feskens EJ. TGFB1 genetic polymorphisms and coronary heart disease risk: a meta-analysis. BMC Med Genet. 2012;13:39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thompson AR, Cooper JA, Jones GT, Drenos F, van Bockxmeer FM, Biros E, Walker PJ, van Rij AM, Golledge J, Norman PE, Hafez H, Humphries SE. Assessment of the association between genetic polymorphisms in transforming growth factor beta, and its binding protein (LTBP), and the presence, and expansion, of abdominal aortic aneurysm. Atherosclerosis. 2010;209:367–73.

Article  CAS  PubMed  Google Scholar 

Zuo S, Xiong J, Chen F, Guo W, Wei Y, Chen D, Liu K, Wu T, Hu Y. Potential interactions between genetic polymorphisms of the transforming growth Factor-β pathway and environmental factors in abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2015;50:71–7.

Article  CAS  PubMed  Google Scholar 

Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352:337–9.

Article  CAS  PubMed  Google Scholar 

Goldfinger JZ, Halperin JL, Marin ML, Stewart yAS, Eagle KA, Fuster xV. (2014) Thoracic aortic aneurysm and Dissection.Journal of the American College of Cardiology. 64:1725–39.

Saratzis A, Bown MJ. The genetic basis for aortic aneurysmal disease. Heart. 2014;100:916–22.

Article  CAS  PubMed  Google Scholar 

Isselbacher EM, Lino Cardenas CL, Lindsay ME. Hereditary Influence in thoracic aortic aneurysm and dissection. Circulation. 2016;133:2516–28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu H, Du S, Fang B, Li C, Jia X, Zheng S, Wang S, Li Q, Su W, Wang N, Zheng F, Chen L, Zhang X, Gustafsson J, Guan Y. VSMC-specific EP4 deletion exacerbates angiotensin II-induced aortic dissection by increasing vascular inflammation and blood pressure. Proc Natl Acad Sci U S A. 2019;116:8457–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niinimäk E, Pynnönen V, Kholova I, Paavonen T, Mennander A. Neovascularization with chronic inflammation characterizes ascending aortic dissection. Anatol J Cardiol. 2018;20:289–95.

PubMed  Google Scholar 

留言 (0)

沒有登入
gif