Flowering phenophases influence the antibacterial and anti-biofilm effects of Thymus vulgaris L. essential oil

Galli J, Calò L, Ardito F, Imperiali M, Bassotti E, Fadda G, Paludetti G. Biofilm formation by Haemophilus influenzae isolated from adeno-tonsil tissue samples, and its role in recurrent adenotonsillitis. Acta Otorhinolaryngol Ital. 2007;27(3):134–8.

CAS  PubMed  PubMed Central  Google Scholar 

Al-Shamiri MM, Zhang S, Mi P, Liu Y, Xun M, Yang E, Ai L, Han L, Chen Y. Phenotypic and genotypic characteristics of Acinetobacter baumannii enrolled in the relationship among antibiotic resistance, biofilm formation and motility. Microb Pathog. 2021;155:104922.

Article  CAS  PubMed  Google Scholar 

Caputo L, Capozzolo F, Amato G, De Feo V, Fratianni F, Vivenzio G, Nazzaro F. Chemical composition, antibiofilm, cytotoxic, and anti-acetylcholinesterase activities of Myrtus communis L. leaves essential oil. BMC Complement Med Ther. 2022;22:142.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eichel V, Schüller A, Biehler K, Al-Ahmad A, Frank U. Antimicrobial effects of mustard oil-containing plants against oral pathogens: an in vitro study. BMC Complement Med Ther. 2020;20(1):156. https://doi.org/10.1186/s12906-020-02953-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonyadi P, Saleh NT, Dehghani M, Yamini M, Amini K. Prevalence of antibiotic resistance of Pseudomonas aeruginosa in cystic fibrosis infection: a systematic review and meta-analysis. Microb Pathog. 2022;165:105461.

Article  CAS  PubMed  Google Scholar 

Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, Ross A, Gupta K, Suuronen EJ, Mah TF, Griffith M, Alarcon EI. Mimicking biofilm formation and development: recent progress in. iScience. 2021;24(5):102443.

Article  PubMed  PubMed Central  Google Scholar 

Guchhait KC, Manna T, Barai M, Karmakar M, Nandi SK, Jana D, Dey A, Panda S, Raul P, Patra A, et al. Antibiofilm and anticancer activities of unripe and ripe Azadirachta indica (neem) seed extracts. BMC Complement Med Ther. 2022;22:42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Melo RS, Albuquerque Azevedo ÁM, Gomes Pereira AM, Rocha RR, Bastos Cavalcante RM, Carneiro Matos MN, Ribeiro Lopes PH, Gomes GA, Soares Rodrigues TH, Santos HSD, et al. Chemical composition and antimicrobial effectiveness of Ocimum gratissimum L. essential oil against multidrug-resistant isolates of Staphylococcus aureus and Escherichia coli. Molecules. 2019;24(21):3864.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lagha R, Ben Abdallah F, Al-Sarhan B, Al-Sodany Y. Antibacterial and biofilm inhibitory activity of medicinal plant essential oils against Escherichia coli isolated from UTI patients. Molecules. 2019;24(6):1161.

Article  PubMed  PubMed Central  Google Scholar 

Balázs VL, Horváth B, Kerekes E, Ács K, Kocsis B, Varga A, Böszörményi A, Nagy DU, Krisch J, Széchenyi A, et al. Anti-Haemophilus activity of selected essential oils detected by TLC-direct bioautography and biofilm inhibition. Molecules. 2019;24(18):3301.

Article  PubMed  PubMed Central  Google Scholar 

Rao H, Choo S, Rajeswari Mahalingam SR, Adisuri DS, Madhavan P, Md. Akim A, Chong PP. Approaches for mitigating microbial biofilm-related drug resistance: a focus on micro- and nanotechnologies. Molecules. 2021;26:1870.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moazeni M, Davari A, Shabanzadeh S, Akhtari J, Saeedi M, Mortyeza-Semnani K, Abastabar M, Nabili M, Moghadam, et al. A. In vitro antifungal activity of Thymus vulgaris essential oil nanoemulsion. J Herb Med. 2021;28:100452.

Article  Google Scholar 

Carpena M, Nuñez-Estevez B, Soria-Lopez A, Garcia-Oliveira P, Prieto MA. Essential oils and their application on active packaging systems. Rev Resour. 2021;10:7.

Google Scholar 

Farhat MB, Sotomayor JA, Jordán MJ. Salvia verbenaca L. essential oil: variation of yield and composition according to collection site and phenophase. Biochem Syst Ecol. 2019;82:35–43.

Article  Google Scholar 

Hassiotis CN, Ntana F, Lazari DM, Poulios S, Vlachonasios KE. Environmental and developmental factors affect essential oil production andquality of Lavandula angustifolia during flowering period. Ind Crops Prod. 2014;62:359–66.

Article  CAS  Google Scholar 

Détár E, Zámbori-Németh É, Gosztola B, Harmath A, Ladányi M, Pluhár Z. Ontogenesis and harvest time are crucial for high quality lavender – role of the flower development in essential oil properties. Ind Crops Prod. 2021;163:113334.

Article  Google Scholar 

Farhat MB, Jordán MJ, Chaouch-Hamada R, Landoulsi A, Sotomayor JA. Phenophase effects on sage (Salvia officinalis L.) yield and composition of essential oil. J Appl Res Med Aromat Plants. 2016;3:87–93.

Google Scholar 

Pluhár Z, Szabó D, Sárosi S. Effects of different factors influencing the essential oil properties of Thymus vulgaris L. PST. 2016;3:312.

Google Scholar 

Formisano C, Delfine S, Oliviero F, Tenore GC, Rigano D, Senatore F. Correlation among environmental factors, chemical composition and antioxidative properties of essential oil and extracts of chamomile (Matricaria chamomilla L.) collected in Molise (South-central Italy). Ind Crop Prod. 2015;63:256–63.

Article  CAS  Google Scholar 

Souza de Oliveira LG, Ribeiro DA, Saraiva ME, Goncalves de Macêdo D, GaFM J, alves G, Pinheiro P, Galberto Martins da Costa Almeida Souza J, MM, et al. Chemical variability of essential oils of Copaifera langsdorffii Desf. Indifferent phenological phases on a savannah in the Northeast, Ceará, Brazil. Ind Crop Prod. 2017;97:455–64.

Assaggaf HM, Naceiri Mrabti H, Rajab BS, Attar AA, Alyamani RA, Hamed M, El Omari N, El Menyiy N, Hazzoumi Z, Benali T, et al. Chemical analysis and investigation of biological effects of Salvia officinalis essential oils at three phenological stages. Molecules. 2022;27(16):5157.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aissaoui F, Hedjal-Chebheb M, Soltani A, Haouel-Hamdi S, Talhi O, Ziani BEC, Mediouni-Ben Jemâa J. Variations of chemical composition of two algerian essential oils collected for different seasons and assessment of their insecticidal toxicity against three moth pests. JPDP. 2021;128(5):1167–76.

CAS  Google Scholar 

Ács K, Balázs VL, Kocsis B, Bencsik T, Böszörményi A, Horváth G. Antibacterial activity evaluation of selected essential oils in liquid and vapor phase on respiratory tract pathogens. BMC Complement Med Ther. 2018;18:227.

Article  Google Scholar 

Pauli A, Schilcher H. Vitro antimicrobial activities of essential oils. 6th ed. New York: CRC Press; 2010.

Google Scholar 

Petrović S, Ušjak L, Milenković M, Arsenijević J, Drobac M, Drndarević A, Niketić M. Thymus dacicus as a new source of antioxidant and antimicrobial metabolites. J Funct Foods. 2017;28:114–21.

Article  Google Scholar 

Hotta M, Nakata R, Katsukawa M, Hori K, Takahashi S, Inoue H. Carvacrol, a component of thyme oil, activates PPARα and γ and suppresses COX-2 expression. J Lipid Res. 2010;51(1):132–9.

Article  PubMed  PubMed Central  Google Scholar 

Oliveira RC, Carvajal-Moreno M, Correa B, Rojo-Callejas F. Cellular, physiological and molecular approaches to investigate the antifungal and anti-aflatoxigenic effects of thyme essential oil on aspergillus flavus. Food Chem. 2020;315:126096.

Article  CAS  PubMed  Google Scholar 

Hammoudi Halat D, Krayem M, Khaled S, Younes S. A focused insight into thyme: biological, chemical, and therapeutic properties of an indigenous mediterranean herb. Nutrients. 2022;14(10):2104.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pandur E, Micalizzi G, Mondello L, Horváth A, Sipos K, Horváth G. Antioxidant and anti-inflammatory effects of thyme (Thymus vulgaris L.) essential oils prepared at different plant phenophases on pseudomonas aeruginosa LPS-activated THP-1 macrophages. Antioxidants. 2022;11(7):1330.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hungarian Central Statistical Office Database. https://www.ksh.hu/docs/hun/xstadat/xstadat_evkozi/e_met006.html Accessed 29 August 2022.

Pandur E, Balatinácz A, Micalizzi G, Mondello L, Horváth A, Sipos K, Horváth G. Anti-inflammatory effect of lavender (Lavandula angustifolia mill.) Essential oil prepared during different plant phenophases on THP-1 macrophages. BMC Complement Med Ther. 2021;21(1):287.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hindler JH. Susceptibility test methods: fastidious bacteria. In: James HJ, Karen CC, Guido F, Michael AP, Marie LL, Sandra SR, David WW, editors. Manual of clinical microbiology. 10th. Washington DC: ASM; 2011. pp. 1180–7.

Chapter  Google Scholar 

Jesionek W, Majer-Dziedzic B, Choma MI. TLC-direct bioautography as a method for evaluation of antimicrobial properties of Thymus vulgaris L. and Salvia officinalis L. essential oils of different origin. J Liq Chromatogr Relat Technol. 2017;40:292–6.

Article  CAS  Google Scholar 

Horváth B, Pál S, Széchenyi A. Preparation and in vitro diffusion study of essential oil Pickering emulsions stabilized by silica nanoparticles. Flavour Fragr J. 2018;33(6):385–96.

Article  Google Scholar 

Kerekes EB, Vidács A, Takó M, Petkovits T, Vágvölgyi C, Horváth G, Balázs VL, Krisch J. Anti-biofilm effect of selected essential oils and main components on mono- and polymicrobic bacterial cultures. Microorganisms. 2019;7(9):345.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peeters E, Nelis HJ, Coenye T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods. 2008;72(2):157–65.

Article  CAS  PubMed  Google Scholar 

Sun Y, Chen S, Zhang C, Liu Y, Ma L, Zhang X. Effects of sub-minimum inhibitory concentrations of lemon essential oil on the acid tolerance and biofilm formation of Streptococcus mutans. Arch Oral Biol. 2018;87:235–41.

Article  CAS  PubMed  Google Scholar 

Kerekes E-B, Deák É, Takó M, Tserennadmid R, Petkovits T, Vágvölgyi C, Krisch J. Anti-biofilm forming and anti-quorum sensing activity of selected essential oils and their main components on food-related micro-organisms. J Appl Microbiol. 2013;115(4):933–42.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif