Hypertension, antihypertensive drugs, and age at onset of Huntington’s disease

Walker FO. Huntington’s disease. Lancet. 2007;369(9557):218–28.

Article  CAS  PubMed  Google Scholar 

Gusella JF, MacDonald ME, Ambrose CM, et al. Molecular genetics of Huntington’s disease. Arch Neurol. 1993;50:1157–63.

Article  CAS  PubMed  Google Scholar 

Ehrlich ME. Huntington’s disease and the striatal medium spiny neuron: cell-autonomous and non-cell-autonomous mechanisms of disease. Neurotherapeutics. 2012;9(2):270–84.

Article  PubMed  PubMed Central  Google Scholar 

Ruocco HH, Lopes-Cendes I, Li LM, et al. Striatal and extrastriatal atrophy in Huntington’s disease and its relationship with length of the CAG repeat. Braz J Med Biol Res. 2006;39(8):1129–36.

Article  CAS  PubMed  Google Scholar 

Roze E, Cahill E, Martin E, et al. Huntington’s Disease and Striatal Signaling. Front Neuroanat. 2011;5:55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langbehn DR, Brinkman RR, Falush D, et al. A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet. 2004;65(4):267–77.

Article  CAS  PubMed  Google Scholar 

Wexler NS, Lorimer J, Porter J, et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci U S A. 2004;101(10):3498–503.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schultz JL, Kamholz JA, Moser DJ, et al. Substance abuse may hasten motor onset of Huntington disease: evaluating the Enroll-HD database. Neurology. 2017;88(9):909–15.

Article  PubMed  PubMed Central  Google Scholar 

Li HL, Li XY, Dong Y, et al. Clinical and genetic profiles in chinese patients with Huntington’s Disease: a ten-year Multicenter Study in China. Aging Dis. 2019;10(5):1003–11.

Article  PubMed  PubMed Central  Google Scholar 

GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, a-nd metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of Disease Study 2017. Lance-t. 2018;392(10159):1923–94.

Article  Google Scholar 

Maillard P, Mitchell GF, Himali JJ, et al. Effects of arterial stiffness on brai-n integrity in young adults from the Framingham Heart Study. Stroke. 2016;47(4):1030–6.

Article  PubMed  PubMed Central  Google Scholar 

Tsao CW, Seshadri S, Beiser AS, et al. Relations of arterial stiffness and en-dothelial function to brain aging in the community. Neurology. 2013;81(11):984–91.

Article  PubMed  PubMed Central  Google Scholar 

Tsao CW, Himali JJ, Beiser AS, et al. Association of arterial stiffness with progression of subclinical brain and cognitive disease. Neurology. 2016;86(7):619–26.

Article  PubMed  PubMed Central  Google Scholar 

Valcárcel-Ocete L, Fullaondo A, Alkorta‐Aranburu G, et al. Does arterial hypertension influence the onset of Huntington’s disease? PLoS ONE. 2018;13:e0197975.

Article  PubMed  PubMed Central  Google Scholar 

Schultz JL, Harshman LA, Langbehn DR, Nopoulos PC. Hypertension is Associated with an earlier age of Onset of Huntington’s Disease. Mov Disord. 2020;35(9):1558–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steventon JJ, Rosser AE, Hart E, Murphy K. Hypertension, antihypertensive use and the delayed-onset of Huntington’s disease. Mov Disord. 2020;35(6):937–46.

Article  PubMed  PubMed Central  Google Scholar 

Davies NM, Holmes MV, Davey Smith G. Reading mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ (Clinical research ed). 2018;362:k601.

Article  PubMed  Google Scholar 

Walker VM, Davey Smith G, Davies NM, Martin RM. Mendelian randomization: a novel approach for the prediction of adverse drug events and drug repurposing opportunities. Int J Epidemiol. 2017;46(6):2078–89.

Article  PubMed  PubMed Central  Google Scholar 

Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of Observational Studies in Epidemiology using mendelian randomization: the STROBE-MR Statement. JAMA. 2021;326(16):1614–21.

Article  PubMed  Google Scholar 

Evangelou E, Warren HR, Mosen-Ansorena D, et al. Genetic analysis of over 1 million people identififies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50:1412–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 2019;35(22):4851–3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen L, Yang H, Li H, et al. Insights into modifiable risk factors of cholelithiasis: a mendelian randomization study. Hepatology. 2022;75(4):785–96.

Article  CAS  PubMed  Google Scholar 

Shim H, Chasman DI, Smith JD, et al. A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS ONE. 2015;10(4):e0120758.

Article  PubMed  PubMed Central  Google Scholar 

Gill D, Georgakis MK, Koskeridis F, et al. Use of genetic variants related to antihypertensive drugs to inform on efficacy and side effects. Circulation. 2019;140(4):270–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:D1074–82.

Article  CAS  PubMed  Google Scholar 

Fishilevich S, Nudel R, Rappaport N et al. GeneHancer: Genome-wide Integration of Enhancers and Target Genes in GeneCards. 2017. Oxford: Database; 2017.

Burgess S, Dudbridge F, Thompson SG. Combining information on multiple in strumental variables in mendelian randomization: comparison of allele score and summarized data methods. Stat Med. 2016;35(11):1880–906.

Article  PubMed  Google Scholar 

Burgess S, Ference BA, Staley JR, et al. Association of LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering therapies: a men delian randomization analysis. JAMA Cardiol. 2018;3(7):619–27.

Article  PubMed  PubMed Central  Google Scholar 

Nowak C, Arnlov J. A mendelian randomization study of the effffects of blood lipids on breast cancer risk. Nat Commun. 2018;9(1):3957.

Article  PubMed  PubMed Central  Google Scholar 

Genetic Modififiers of Huntington’s Disease (GeM-HD) Consortium. CAG repeat not polyglutamine length determines timing of huntington’s disease onset. Cell. 2019;178(4):887–900.

Article  Google Scholar 

Burgess S, Thompson SG. Interpreting findings from mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32(5):377–89.

Article  PubMed  PubMed Central  Google Scholar 

Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some Invalid Instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.

Article  PubMed  PubMed Central  Google Scholar 

Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greco MF, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in mendelian randomisation studies with summary data and a continuous outcome. Stat Med. 2015;34(21):2926–40.

Article  Google Scholar 

Wang M, Cornelis MC, Zhang Z, et al. Mendelian randomization study of coffee consumption and age at onset of Huntington’s disease. Clin Nutr. 2021;40(11):5615–8.

Article  CAS  PubMed  Google Scholar 

Wang M, Liu D, Yang S, et al. Smoking, alcohol consumption, and age at onset of Huntington’s disease: a mendelian randomization study. Parkinsonism Relat Disord. 2022;97:34–8.

Article  PubMed  Google Scholar 

Aziz NA, Weydt P. Telomere length as a modifier of age-at-onset in Huntington disease: a two-sample mendelian randomization study. J Neurol. 2018;265(9):2149–51.

Article  CAS  PubMed  Google Scholar 

Glodzik L, Rusinek H, Pirraglia E, et al. Blood pressure decrease correlates with tau pathology and memory decline in hypertensive elderly. Neurobiol Aging. 2014;35(1):64–71.

Article  CAS 

留言 (0)

沒有登入
gif