Genomic hallmarks and therapeutic implications of G0 cell cycle arrest in cancer

Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

Article  CAS  PubMed  Google Scholar 

van Dijk D, Dhar R, Missarova AM, Espinar L, Blevins WR, Lehner B, et al. Slow-growing cells within isogenic populations have increased RNA polymerase error rates and DNA damage. Nat Commun. 2015;6:7972.

Article  PubMed  Google Scholar 

Davis JE, Kirk J, Ji Y, Tang DG. Tumor dormancy and slow-cycling cancer cells. Adv Exp Med Biol. 2019;1164:199–206.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phan TG, Croucher PI. The dormant cancer cell life cycle. Nat Rev Cancer. 2020;20(7):398–411.

Article  CAS  PubMed  Google Scholar 

Rehman SK, Haynes J, Collignon E, Brown KR, Wang Y, Nixon AML, et al. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell. 2021;184(1):226-42.e21.

Article  CAS  PubMed  Google Scholar 

Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puig I, Tenbaum SP, Chicote I, Arqués O, Martínez-Quintanilla J, Cuesta-Borrás E, et al. TET2 controls chemoresistant slow-cycling cancer cell survival and tumor recurrence. J Clin Invest. 2018;128(9):3887–905.

Article  PubMed  PubMed Central  Google Scholar 

Cabanos HF, Hata AN. Emerging insights into targeted therapy-tolerant persister cells in cancer. Cancers (Basel). 2021;13(11):2666.

Article  CAS  PubMed  Google Scholar 

Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141(1):69–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swayden M, Chhouri H, Anouar Y, Grumolato L. Tolerant/persister cancer cells and the path to resistance to targeted therapy. Cells. 2020;9(12):2601.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsu CH, Altschuler SJ, Wu LF. Patterns of early p21 dynamics determine proliferation-senescence cell fate after chemotherapy. Cell. 2019;178(2):361-73.e12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue JY, Zhao Y, Aronowitz J, Mai TT, Vides A, Qeriqi B, et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature. 2020;577(7790):421–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aissa AF, Islam ABMM, Ariss MM, Go CC, Rader AE, Conrardy RD, et al. Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer. Nat Commun. 2021;12(1):1628.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malladi S, Macalinao DG, Jin X, He L, Basnet H, Zou Y, et al. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell. 2016;165(1):45–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ribas A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov. 2015;5(9):915–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer. 2014;14(9):611–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barkan D, El Touny LH, Michalowski AM, Smith JA, Chu I, Davis AS, et al. Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res. 2010;70(14):5706–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Masago K, Fujita S, Yatabe Y. Targeting minimal residual disease after surgery with molecular targeted therapy: the real path to a cure? J Thorac Dis. 2018;10(Suppl 17):S1982–5.

Article  PubMed  PubMed Central  Google Scholar 

Coller HA, Sang L, Roberts JM. A new description of cellular quiescence. PLoS Biol. 2006;4(3):e83.

Article  PubMed  PubMed Central  Google Scholar 

Rittershaus ES, Baek SH, Sassetti CM. The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe. 2013;13(6):643–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miles S, Bradley GT, Breeden LL. The budding yeast transition to quiescence. Yeast. 2021;38(1):30–8.

Article  CAS  PubMed  Google Scholar 

Marescal O, Cheeseman IM. Cellular mechanisms and regulation of quiescence. Dev Cell. 2020;55(3):259–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arora M, Moser J, Phadke H, Basha AA, Spencer SL. Endogenous replication stress in mother cells leads to quiescence of daughter cells. Cell Rep. 2017;19(7):1351–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barr AR, Cooper S, Heldt FS, Butera F, Stoy H, Mansfeld J, et al. DNA damage during S-phase mediates the proliferation-quiescence decision in the subsequent G1 via p21 expression. Nat Commun. 2017;8:14728.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heldt FS, Barr AR, Cooper S, Bakal C, Novák B. A comprehensive model for the proliferation-quiescence decision in response to endogenous DNA damage in human cells. Proc Natl Acad Sci U S A. 2018;115(10):2532–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Itahana K, Dimri GP, Hara E, Itahana Y, Zou Y, Desprez PY, et al. A role for p53 in maintaining and establishing the quiescence growth arrest in human cells. J Biol Chem. 2002;277(20):18206–14.

Article  CAS  PubMed  Google Scholar 

Sadasivam S, DeCaprio JA. The DREAM complex: master coordinator of cell cycle-dependent gene expression. Nat Rev Cancer. 2013;13(8):585–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Min M, Spencer SL. Spontaneously slow-cycling subpopulations of human cells originate from activation of stress-response pathways. PLoS Biol. 2019;17(3):e3000178.

Article  CAS  PubMed  PubMed Central  Google Scholar 

García-Gutiérrez L, Delgado MD, León J. MYC oncogene contributions to release of cell cycle brakes. Genes (Basel). 2019;10(3):244.

Article  PubMed  Google Scholar 

Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L. ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res. 2003;63(7):1684–95.

CAS  PubMed  Google Scholar 

Spencer SL, Cappell SD, Tsai FC, Overton KW, Wang CL, Meyer T. The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell. 2013;155(2):369–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller I, Min M, Yang C, Tian C, Gookin S, Carter D, et al. Ki67 is a graded rather than a binary marker of proliferation versus quiescence. Cell Rep. 2018;24(5):1105-12.e5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.

Article  CAS  PubMed  Google Scholar 

Kleinsmith LJ, Pierce GB Jr. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 1964;24:1544–51.

CAS  PubMed  Google Scholar 

Ashraf HM, Moser J, Spencer SL. Senescence evasion in chemotherapy: a sweet spot for p21. Cell. 2019;178(2):267–9.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif