Microbiota in disease-transmitting vectors

World Health Organization. Global vector control response (2017–2030). World Health Organization https://www.who.int/publications-detail-redirect/9789241512978/ (2017).

Bogiitsh, B. J., Carter, C. E. & Oeltmann, T. N. Human Pararsitology 4th edn (Academic, 2013).

World Health Organization. Vector-borne diseases. World Health Organization https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (2020).

Socha, W., Kwasnik, M., Larska, M., Rola, J. & Rozek, W. Vector-borne viral diseases as a current threat for human and animal health—One Health perspective. J. Clin. Med. 11, 3026 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Kurokawa, C. et al. Interactions between Borrelia burgdorferi and ticks. Nat. Rev. Microbiol. 18, 587–600 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wondim, M. A. et al. Epidemiological trends of trans-boundary tick-borne encephalitis in Europe, 2000–2019. Pathogens 11, 704 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Piotrowski, M. & Rymaszewska, A. Expansion of tick-borne rickettsioses in the World. Microorganisms 8, 1906 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madison-Antenucci, S., Kramer, L. D., Gebhardt, L. L. & Kauffman, E. Emerging tick-borne diseases. Clin. Microbiol. Rev. 33, e00083-18 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Michelitsch, A., Wernike, K., Klaus, C., Dobler, G. & Beer, M. Exploring the reservoir hosts of tick-borne encephalitis virus. Viruses 11, 669 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Wilson, A. L. et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 14, e0007831 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beaty, B. J. & Marquardt, W. C. The Biology of Disease Vectors (Univ. Press of Colorado, 1996).

Jimenez-Cortes, J. G. et al. Bacterial symbionts in human blood-feeding arthropods: Patterns, general mechanisms and effects of global ecological changes. Acta Trop. 186, 69–101 (2018).

Article  PubMed  Google Scholar 

Song, X., Zhong, Z., Gao, L., Weiss, B. L. & Wang, J. Metabolic interactions between disease-transmitting vectors and their microbiota. Trends Parasitol. 38, 697–708 (2022).

Article  CAS  PubMed  Google Scholar 

Shaw, W. R. & Catteruccia, F. Vector biology meets disease control: using basic research to fight vector-borne diseases. Nat. Microbiol. 4, 20–34 (2019).

Article  CAS  PubMed  Google Scholar 

Moran, N. A. Symbiosis. Curr. Biol. 16, R866–R871 (2006).

Article  CAS  PubMed  Google Scholar 

Khachane, A. N., Timmis, K. N. & Martins dos Santos, V. A. Dynamics of reductive genome evolution in mitochondria and obligate intracellular microbes. Mol. Biol. Evol. 24, 449–456 (2007).

Article  CAS  PubMed  Google Scholar 

Malassigne, S., Valiente Moro, C. & Luis, P. Mosquito mycobiota: an overview of non-entomopathogenic fungal interactions. Pathogens 9, 564 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altinli, M., Schnettler, E. & Sicard, M. Symbiotic interactions between mosquitoes and mosquito viruses. Front. Cell Infect. Micrbiol. 11, 694020 (2021).

Article  CAS  Google Scholar 

Brito, T. F. et al. Transovarial transmission of a core virome in the Chagas disease vector Rhodnius prolixus. PLoS Pathog. 17, e1009780 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kariithi, H. M. et al. Coevolution of hytrosaviruses and host immune responses. BMC Microbiol. 18, 183 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, H., Cui, C., Wang, L., Jacobs-Lorena, M. & Wang, S. Mosquito microbiota and implications for disease control. Trends Parasitol. 36, 98–111 (2020).

Article  PubMed  Google Scholar 

Campolina, T. B., Villegas, L. E. M., Monteiro, C. C., Pimenta, P. F. P. & Secundino, N. F. C. Tripartite interactions: Leishmania, microbiota and Lutzomyia longipalpis. PLoS Negl. Trop. Dis. 14, e0008666 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Wang, S. et al. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science 357, 1399–1402 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maffo, C. G. T. et al. Molecular detection and maternal transmission of a bacterial symbiont Asaia species in field-caught Anopheles mosquitoes from Cameroon. Parasit. Vectors 14, 539 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caragata, E. P., Dutra, H. L. C., Sucupira, P. H. F., Ferreira, A. G. A. & Moreira, L. A. Wolbachia as translational science: controlling mosquito-borne pathogens. Trends Parasitol. 37, 1050–1067 (2021).

Article  PubMed  Google Scholar 

Vasilakis, N. et al. Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J. Virol. 87, 2475–2488 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cappelli, A., Favia, G. & Ricci, I. Wickerhamomyces anomalus in mosquitoes: a promising yeast-based tool for the “symbiotic control” of mosquito-borne diseases. Front. Microbiol. 11, 621605 (2020).

Article  PubMed  Google Scholar 

Patterson, E. I., Villinger, J., Muthoni, J. N., Dobel-Ober, L. & Hughes, G. L. Exploiting insect-specific viruses as a novel strategy to control vector-borne disease. Curr. Opin. Insect Sci. 39, 50–56 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Duron, O. & Gottlieb, Y. Convergence of nutritional symbioses in obligate blood feeders. Trends Parasitol. 36, 816–825 (2020).

Article  CAS  PubMed  Google Scholar 

Attardo, G. M., Scolari, F. & Malacrida, A. Bacterial symbionts of tsetse flies: relationships and functional interactions between tsetse flies and their symbionts. Results Probl. Cell Differ. 69, 497–536 (2020).

Article  CAS  PubMed  Google Scholar 

Pais, R., Lohs, C., Wu, Y., Wang, J. & Aksoy, S. The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Appl. Environ. Microbiol. 74, 5965–5974 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sasaki-Fukatsu, K. et al. Symbiotic bacteria associated with stomach discs of human lice. Appl. Environ. Microbiol. 72, 7349–7352 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X. Y. & Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl Acad. Sci. USA 107, 769–774 (2010).

Article  CAS  PubMed  Google Scholar 

Stavru, F., Riemer, J., Jex, A. & Sassera, D. When bacteria meet mitochondria: the strange case of the tick symbiont Midichloria mitochondrii. Cell Microbiol. 22, e13189 (2020).

Article  CAS  PubMed  Google Scholar 

Salcedo-Porras, N., Umana-Diaz, C., Bitencourt, R. O. B. & Lowenberger, C. The role of bacterial symbionts in triatomines: an evolutionary perspective. Microorganisms 8, 1438 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kariithi, H. M., Meki, I. K., Boucias, D. G. & Abd-Alla, A. M. Hytrosaviruses: current status and perspective. Curr. Opin. Insect Sci. 22, 71–78 (2017).

Article  PubMed  Google Scholar 

Neville, C. A. The Biology of Mosquitoes: Development, Nutrition and Reproduction (Chapman & Hall, 1992).

Coon, K. L., Vogel, K. J., Brown, M. R. & Strand, M. R. Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 23, 2727–2739 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chouaia, B. et al. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol. 12, S2 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, X. et al. Bacterial microbiota assemblage in Aedes albopictus mosquitoes and its impacts on larval development. Mol. Ecol. 27, 2972–2985 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vogel, K. J., Valzania, L., Coon, K. L., Brown, M. R. & Strand, M. R. Transcri

留言 (0)

沒有登入
gif