Core needle biopsies alter the amounts of CCR5, Siglec-15, and PD-L1 positivities in breast carcinoma

Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, Zackrisson S, Senkus E (2019) Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol 30:1194–1220. https://doi.org/10.1093/annonc/mdz173

Article  CAS  PubMed  Google Scholar 

Rakha EA, Ellis IO (2007) An overview of assessment of prognostic and predictive factors in breast cancer needle core biopsy specimens. J Clin Pathol 60:1300–1306. https://doi.org/10.1136/jcp.2006.045377

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liebens F, Carly B, Cusumano P, Van Beveren M, Beier B, Fastrez M, Rozenberg S (2009) Breast cancer seeding associated with core needle biopsies: a systematic review. Maturitas 62:113–123. https://doi.org/10.1016/j.maturitas.2008.12.002

Article  PubMed  Google Scholar 

Philpotts LE (2001) Controversies in core-needle breast biopsy. Semin Roentgenol 36:270–283. https://doi.org/10.1053/sroe.2001.25121

Article  CAS  PubMed  Google Scholar 

Knight R, Horiuchi K, Parker SH, Ratzer ER, Fenoglio ME (2002) Risk of needle-track seeding after diagnostic image-guided core needle biopsy in breast cancer. Jsls 6:207–209

PubMed  PubMed Central  Google Scholar 

Bilous M (2010) Breast core needle biopsy: issues and controversies. Mod Pathol 23(Suppl 2):S36–S45. https://doi.org/10.1038/modpathol.2010.34

Article  PubMed  Google Scholar 

Tardivon AA, Guinebretière JM, Dromain C, Deghaye M, Caillet H, Georgin V (2002) Histological findings in surgical specimens after core biopsy of the breast. Eur J Radiol 42:40–51. https://doi.org/10.1016/s0720-048x(01)00482-x

Article  CAS  PubMed  Google Scholar 

Huang J, Chen X, Fei X, Huang O, Wu J, Zhu L, He J, Chen W, Li Y, Shen K (2019) Changes of tumor infiltrating lymphocytes after core needle biopsy and the prognostic implications in early stage breast cancer: a retrospective study. Cancer Res Treat 51:1336–1346. https://doi.org/10.4143/crt.2018.504

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cha YJ, Ahn SG, Bae SJ, Yoon CI, Seo J, Jung WH, Son EJ, Jeong J (2018) Comparison of tumor-infiltrating lymphocytes of breast cancer in core needle biopsies and resected specimens: a retrospective analysis. Breast Cancer Res Treat 171:295–302. https://doi.org/10.1007/s10549-018-4842-7

Article  PubMed  Google Scholar 

Mathenge EG, Dean CA, Clements D, Vaghar-Kashani A, Photopoulos S, Coyle KM, Giacomantonio M, Malueth B, Nunokawa A, Jordan J, Lewis JD, Gujar SA, Marcato P, Lee PW, Giacomantonio CA (2014) Core needle biopsy of breast cancer tumors increases distant metastases in a mouse model. Neoplasia 16:950–960. https://doi.org/10.1016/j.neo.2014.09.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu Y, Guo F, Chen H, Lin Y, Fu X, Zhang H, Ding M (2019) Core needle biopsy promotes lung metastasis of breast cancer: an experimental study. Mol Clin Oncol 10:253–260. https://doi.org/10.3892/mco.2018.1784

Article  CAS  PubMed  Google Scholar 

Huang W, Ran R, Shao B, Li H (2019) Prognostic and clinicopathological value of PD-L1 expression in primary breast cancer: a meta-analysis. Breast Cancer Res Treat 178:17–33. https://doi.org/10.1007/s10549-019-05371-0

Article  CAS  PubMed  Google Scholar 

Stovgaard ES, Dyhl-Polk A, Roslind A, Balslev E, Nielsen D (2019) PD-L1 expression in breast cancer: expression in subtypes and prognostic significance: a systematic review. Breast Cancer Res Treat 174:571–584. https://doi.org/10.1007/s10549-019-05130-1

Article  CAS  PubMed  Google Scholar 

Rashid S, Song D, Yuan J, Mullin BH, Xu J (2022) Molecular structure, expression, and the emerging role of Siglec-15 in skeletal biology and cancer. J Cell Physiol 237:1711–1719. https://doi.org/10.1002/jcp.30654

Article  CAS  PubMed  Google Scholar 

Lim J, Sari-Ak D, Bagga T (2021) Siglecs as therapeutic targets in cancer. Biology (Basel) 10. https://doi.org/10.3390/biology10111178

Gianchecchi E, Arena A, Fierabracci A (2021) Sialic acid-siglec axis in human immune regulation, involvement in autoimmunity and cancer and potential therapeutic treatments. Int J Mol Sci 22. https://doi.org/10.3390/ijms22115774

Rodrigues Mantuano N, Natoli M, Zippelius A, Läubli H (2020) Tumor-associated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy. J Immunother Cancer 8. https://doi.org/10.1136/jitc-2020-001222

Angata T (2020) Siglec-15: a potential regulator of osteoporosis, cancer, and infectious diseases. J Biomed Sci 27:10. https://doi.org/10.1186/s12929-019-0610-1

Article  PubMed  PubMed Central  Google Scholar 

Aldinucci D, Borghese C, Casagrande N (2020) The CCL5/CCR5 Axis in Cancer Progression. Cancers (Basel) 12. https://doi.org/10.3390/cancers12071765

Velasco-Velázquez M, Jiao X, De La Fuente M, Pestell TG, Ertel A, Lisanti MP, Pestell RG (2012) CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res 72:3839–3850. https://doi.org/10.1158/0008-5472.Can-11-3917

Article  PubMed  Google Scholar 

Aldinucci D, Colombatti A (2014) The inflammatory chemokine CCL5 and cancer progression. Mediators Inflamm 2014:292376. https://doi.org/10.1155/2014/292376

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiao X, Wang M, Zhang Z, Li Z, Ni D, Ashton AW, Tang HY, Speicher DW, Pestell RG (2021) Leronlimab, a humanized monoclonal antibody to CCR5, blocks breast cancer cellular metastasis and enhances cell death induced by DNA damaging chemotherapy. Breast Cancer Res 23:11. https://doi.org/10.1186/s13058-021-01391-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao D, Rahbar R, Fish EN (2016) CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells. Open Biol 6. https://doi.org/10.1098/rsob.160122

Sax MJ, Gasch C, Athota VR, Freeman R, Rasighaemi P, Westcott DE, Day CJ, Nikolic I, Elsworth B, Wei M, Rogers K, Swarbrick A, Mittal V, Pouliot N, Mellick AS (2016) Cancer cell CCL5 mediates bone marrow independent angiogenesis in breast cancer. Oncotarget 7:85437–85449. https://doi.org/10.18632/oncotarget.13387

Article  PubMed  PubMed Central  Google Scholar 

Zeng Z, Lan T, Wei Y, Wei X (2022) CCL5/CCR5 axis in human diseases and related treatments. Genes Dis 9:12–27. https://doi.org/10.1016/j.gendis.2021.08.004

Article  CAS  PubMed  Google Scholar 

Hemmatazad H, Berger MD (2021) CCR5 is a potential therapeutic target for cancer. Expert Opin Ther Targets 25:311–327. https://doi.org/10.1080/14728222.2021.1902505

Article  CAS  PubMed  Google Scholar 

Erber R, Hartmann A (2020) Understanding PD-L1 testing in breast cancer: a practical approach. Breast Care (Basel) 15:481–490. https://doi.org/10.1159/000510812

Article  PubMed  Google Scholar 

Upadhyaya C, Jiao X, Ashton A, Patel K, Kossenkov AV, Pestell RG (2020) The G protein coupled receptor CCR5 in cancer. Adv Cancer Res 145:29–47. https://doi.org/10.1016/bs.acr.2019.11.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeselsohn RM, Werner L, Regan MM, Fatima A, Gilmore L, Collins LC, Beck AH, Bailey ST, He HH, Buchwalter G, Brown M, Iglehart JD, Richardson A, Come SE (2013) Digital quantification of gene expression in sequential breast cancer biopsies reveals activation of an immune response. PLoS One 8:e64225. https://doi.org/10.1371/journal.pone.0064225

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ishibashi H, Suzuki T, Suzuki S, Moriya T, Kaneko C, Takizawa T, Sunamori M, Handa M, Kondo T, Sasano H (2003) Sex steroid hormone receptors in human thymoma. J Clin Endocrinol Metab 88:2309–2317. https://doi.org/10.1210/jc.2002-021353

Article  CAS  PubMed  Google Scholar 

Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Penault-Llorca F, Perez EA, Thompson EA, Symmans WF, Richardson AL, Brock J, Criscitiello C, Bailey H, Ignatiadis M, Floris G et al (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26:259–271. https://doi.org/10.1093/annonc/mdu450

Article  CAS  PubMed  Google Scholar 

Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, Christie M, van de Vijver K, Estrada MV, Gonzalez-Ericsson PI, Sanders M, Solomon B, Solinas C, Van den Eynden G, Allory Y, Preusser M, Hainfellner J, Pruneri G, Vingiani A et al (2017) Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the International Immunooncology Biomarkers Working Group: part 1: assessing the host immune response, TILs in invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research. Adv Anat Pathol 24:235–251. https://doi.org/10.1097/pap.0000000000000162

Article  PubMed  PubMed Central  Google Scholar 

Cirqueira MB, Mendonça CR, Noll M, Soares LR, de Paula Carneiro Cysneiros MA, Paulinelli RR, MAR M, Freitas-Junior R (2021) Prognostic role of PD-L1 expression in invasive breast cancer: a systematic review and meta-analysis. Cancers (Basel) 13. https://doi.org/10.3390/cancers13236090

Vranic S, Cyprian FS, Gatalica Z, Palazzo J (2021) PD-L1 status in breast cancer: current view and perspectives. Semin Cancer Biol 72:146–154. https://doi.org/10.1016/j.semcancer.2019.12.003

Article  PubMed  Google Scholar 

Sun J, Lu Q, Sanmamed MF, Wang J (2021) Siglec-15 as an emerging target for next-generation cancer immunotherapy. Clin Cancer Res 27:680–688. https://doi.org/10.1158/1078-0432.Ccr-19-2925

Article  CAS  PubMed  Google Scholar 

Lin CH, Yeh YC, Yang KD (2021) Functions and therapeutic targets of Siglec-mediated infections, inflammations and cancers. J Formos Med Assoc 120:5–24. https://doi.org/10.1016/j.jfma.2019.10.019

Article  CAS  PubMed  Google Scholar 

Chen X, Mo S, Zhang Y, Ma H, Lu Z, Yu S, Chen J (2022) Analysis of a novel immune checkpoint, Siglec-15, in pancreatic ductal adenocarcinoma. J Pathol Clin Res 8:268–278. https://doi.org/10.1002/cjp2.260

Article 

留言 (0)

沒有登入
gif