The roles and implications of RNA m6A modification in cancer

Huang, H., Weng, H. & Chen, J. m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell 37, 270–288 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qing, Y., Su, R. & Chen, J. RNA modifications in hematopoietic malignancies: a new research frontier. Blood 138, 637–648 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsu, P. J. et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27, 1115–1127 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roundtree, I. A. et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. eLife 6, e31311 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Shi, H. et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27, 315–328 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

Article  PubMed  Google Scholar 

Wang, X. et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao, W. et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61, 507–519 (2016).

Article  CAS  PubMed  Google Scholar 

Huang, H. et al. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature 567, 414–419 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, J. et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

Article  CAS  PubMed  Google Scholar 

Wang, X. et al. Structural basis of N6-adenosine methylation by the METTL3-METTL14 complex. Nature 534, 575–578 (2016).

Article  CAS  PubMed  Google Scholar 

Ping, X. L. et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24, 177–189 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwartz, S. et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep. 8, 284–296 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wen, J. et al. Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol. Cell 69, 1028–1038.e6 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yue, Y. et al. VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 4, 10 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Knuckles, P. et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes Dev. 32, 415–429 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pendleton, K. E. et al. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169, 824–835.e14 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Tran, N. et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 47, 7719–7733 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Ma, H. et al. N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat. Chem. Biol. 15, 88–94 (2019).

Article  CAS  PubMed  Google Scholar 

Wei, J. et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71, 973–985.e5 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

Article  CAS  PubMed  Google Scholar 

Huang, H. et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20, 285–295 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weng, H. et al. The m6A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell 40, 1566–1582.e10 (2022).

Article  CAS  PubMed  Google Scholar 

Müller, S. et al. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res. 47, 375–390 (2018).

Article  PubMed Central  Google Scholar 

Degrauwe, N. et al. The RNA binding protein IMP2 preserves glioblastoma stem cells by preventing let-7 target gene silencing. Cell Rep. 15, 1634–1647 (2016).

Article  CAS  PubMed  Google Scholar 

Ennajdaoui, H. et al. IGF2BP3 modulates the interaction of invasion-associated transcripts with RISC. Cell Rep. 15, 1876–1883 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edupuganti, R. R. et al. N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat. Struct. Mol. Biol. 24, 870–878 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, F. et al. Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets. Hum. Mol. Genet. 27, 3936–3950 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Alarcon, C. R. et al. HNRNPA2B1 Is a mediator of m6A-dependent nuclear RNA processing events. Cell 162, 1299–1308 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560–564 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, N. et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45, 6051–6063 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arguello, A. E., DeLiberto, A. N. & Kleiner, R. E. RNA chemical proteomics reveals the N6-methyladenosine (m6A)-regulated protein-RNA interactome. J. Am. Chem. Soc. 139, 17249–17252 (2017).

Article  CAS  PubMed  Google Scholar 

Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

Article  CAS  PubMed  Google Scholar 

Ke, S. et al. m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes. Dev. 31, 990–1006 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barbieri, I. et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 552, 126–131 (2017).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif