Arenes participate in 1,3-dipolar cycloaddition with in situ-generated diazoalkenes

Michael, A. Ueber die Einwirkung von Diazobenzolimid auf Acetylendicarbonsäuremethylester. J. Prakt. Chem. 48, 94–95 (1893).

Article  Google Scholar 

Huisgen, R. 1,3-Dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. 2, 565–598 (1963).

Article  Google Scholar 

Huisgen, R. Kinetics and mechanism of 1,3-dipolar cycloadditions. Angew. Chem. Int. Ed. 2, 633–645 (1963).

Article  Google Scholar 

Padwa, A. (ed). 1,3-Dipolar Cycloaddition Chemistry (Wiley, 1984).

Breugst, M. & Reissig, H. U. The Huisgen reaction: milestones of the 1,3-dipolar cycloaddition. Angew. Chem. Int. Ed. 59, 12293–12307 (2020).

Article  CAS  Google Scholar 

Huisgen, R. & Knorr, R. Benzyne as a dipolarophile. Naturwissenschaften 48, 716 (1962).

Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide–alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

Article  CAS  PubMed  Google Scholar 

Remy, R. & Bochet, C. G. Arene–alkene cycloaddition. Chem. Rev. 116, 9816–9849 (2016).

Article  CAS  PubMed  Google Scholar 

Streit, U. & Bochet, C. G. The arene–alkene photocycloaddition. Beilstein J. Org. Chem. 7, 525–542 (2011).

Bott, K. Dialkylamino-substituted ethylenediazonium salts. Chem. Ber. 120, 1867–1871 (1987).

Article  CAS  Google Scholar 

Lahti, P. M. & Berson, J. A. Thermal rearrangement of an allenic diazoalkane and intermolecular capture of a diazoethene by a cyclopropene to give a common dihydropyridazine product. J. Am. Chem. Soc. 103, 7011–7012 (1981).

Article  CAS  Google Scholar 

Ando, W., Furuhata, T. & Takata, T. A highly efficient reaction of thiobenzophenone for 1-diazoalkene. Tetrahedron Lett. 26, 4499–4500 (1985).

Article  CAS  Google Scholar 

Munschauer, R. & Maas, G. 1,3-(C → O) silyl shift in α-diazo α-silyl ketones: cycloaddition reactions and kinetic proof for the β-siloxydiazoalkene intermediate. Angew. Chem. Int. Ed. 30, 306–308 (1991).

Article  Google Scholar 

Manz, B. & Maas, G. Synthesis of 5-alkylidene-4,5-dihydro-3H-1,2,4(λ3)-diazaphospholes from α-silyl-α-diazoketones and phosphaalkenes. Tetrahedron 52, 10053–10072 (1996).

Article  CAS  Google Scholar 

Antoni, P. W., Golz, C., Holstein, J. J., Pantazis, D. A. & Hansmann, M. M. Isolation and reactivity of an elusive diazoalkene. Nat. Chem. 13, 587–593 (2021).

Article  CAS  PubMed  Google Scholar 

Varava, P., Dong, Z., Scopelliti, R., Fadaei-Tirani, F. & Severin, K. Isolation and characterization of diazoolefins. Nat. Chem. 13, 1055–1060 (2021).

Article  CAS  PubMed  Google Scholar 

Hein, J. E. & Fokin, V. V. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem. Soc. Rev. 39, 1302–1315 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

Article  CAS  Google Scholar 

Tornoe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).

Whiting, M. & Fokin, V. V. Copper-catalyzed reaction cascade: direct conversion of alkynes into N-sulfonylazetidin-2-imines. Angew. Chem. Int. Ed. 45, 3157–3161 (2006).

Cho, S. H., Yoo, E. J., Bae, I. & Chang, S. Copper-catalyzed hydrative amide synthesis with terminal alkyne, sulfonyl azide, and water. J. Am. Chem. Soc. 127, 16046–16047 (2005).

Article  CAS  PubMed  Google Scholar 

Cassidy, M. P., Raushel, J. & Fokin, V. V. Practical synthesis of amides from in situ generated copper(I) acetylides and sulfonyl azides. Angew. Chem. Int. Ed. 45, 3154–3157 (2006).

Article  CAS  Google Scholar 

Horneff, T., Chuprakov, S., Chernyak, N., Gevorgyan, V. & Fokin, V. V. Rhodium-catalyzed transannulation of 1,2,3-triazoles with nitriles. J. Am. Chem. Soc. 130, 14972–14974 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoo, E. J. et al. Mechanistic studies on the Cu-catalyzed three-component reactions of sulfonyl azides, 1-alkynes and amines, alcohols, or water: dichotomy via a common pathway. J. Org. Chem. 73, 5520–5528 (2008).

Article  CAS  PubMed  Google Scholar 

Kim, S. H., Park, S. H., Choi, J. H. & Chang, S. Sulfonyl and phosphoryl azides: going further beyond the click realm of alkyl and aryl azides. Chem. Asian J. 6, 2618–2634 (2011).

Article  CAS  PubMed  Google Scholar 

Chuprakov, S., Worrell, B. T., Selander, N., Sit, R. K. & Fokin, V. V. Stereoselective 1,3-insertions of rhodium(II) azavinyl carbenes. J. Am. Chem. Soc. 136, 195–202 (2014).

Article  CAS  PubMed  Google Scholar 

Selander, N., Worrell, B. T., Chuprakov, S., Velaparthi, S. & Fokin, V. V. Arylation of rhodium(II) azavinyl carbenes with boronic acids. J. Am. Chem. Soc. 134, 14670–14673 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Markos, A., Janecky, L., Klepetarova, B., Pohl, R. & Beier, P. Stereoselective synthesis of (Z)-β-enamido fluorides from N-fluoroalkyl- and N-sulfonyl-1,2,3-triazoles. Org. Lett. 23, 4224–4227 (2021).

Article  CAS  PubMed  Google Scholar 

Meza-Avina, M. E., Patel, M. K., Lee, C. B., Dietz, T. J. & Croatt, M. P. Selective formation of 1,5-substituted sulfonyl triazoles using acetylides and sulfonyl azides. Org. Lett. 13, 2984–2987 (2011).

Smith, C. D. & Greaney, M. F. Zinc mediated azide–alkyne ligation to 1,5- and 1,4,5-substituted 1,2,3-triazoles. Org. Lett. 15, 4826–4829 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Snieckus, V. Directed ortho metalation. Tertiary amide and O-carbamate directors in synthetic strategies for polysubstituted aromatics. Chem. Rev. 90, 879–933 (1990).

Article  CAS  Google Scholar 

Ruiz, C., Raya-Baron, A., Ortuno, M. A. & Fernandez, I. Accelerating role of deaggregation agents in lithium-catalysed hydrosilylation of carbonyl compounds. Dalton Trans. 49, 7932–7937 (2020).

Reich, H. J. Role of organolithium aggregates and mixed aggregates in organolithium mechanisms. Chem. Rev. 113, 7130–7178 (2013).

Article  CAS  PubMed  Google Scholar 

Leroux, F. & Schlosser, M. The “aryne” route to biaryls featuring uncommon substituent patterns. Angew. Chem. Int. Ed. 41, 4272–4274 (2002).

Article  CAS  Google Scholar 

Henderson, A. R. P., Kosowan, J. R. & Wood, T. E. The Truce–Smiles rearrangement and related reactions: a review. Can. J. Chem. 95, 483–504 (2017).

Article  CAS  Google Scholar 

Holden, C. M., Sohel, S. M. & Greaney, M. F. Metal free bi(hetero)aryl synthesis: a benzyne Truce–Smiles rearrangement. Angew. Chem. Int. Ed. 55, 2450–2453 (2016).

Article  CAS  Google Scholar 

Rabet, P. T., Boyd, S. & Greaney, M. F. Metal-free intermolecular aminoarylation of alkynes. Angew. Chem. Int. Ed. 56, 4183–4186 (2017).

Article  CAS  Google Scholar 

Majumdar, K. C. & Mondal, S. Recent developments in the synthesis of fused sultams. Chem. Rev. 111, 7749–7773 (2011).

Article  CAS  PubMed  Google Scholar 

Debnath, S. & Mondal, S. Sultams: recent syntheses and applications. Eur. J. Org. Chem. 2018, 933–956 (2018).

Article  CAS  Google Scholar 

Banerjee, R., Chakraborty, H. & Sarkar, M. Photophysical studies of oxicam group of NSAIDs: piroxicam, meloxicam and tenoxicam. Spectrochim. Acta, Part A 59, 1213–1222 (2003).

Article  Google Scholar 

Liu, Z.-P. & Takeuchi, Y. New developments in the synthesis of saccharin related five- and six-membered benzosultams. Heterocycles 78, 1387–1412 (2009).

Article  CAS  Google Scholar 

Takeuchi, Y., Liu, Z., Satoh, A., Shiragami, T. & Shibata, N. Expeditious synthesis of 3,4-dihydro-2H-1λ6-benzo[e][1,2]thiazine 1,1-dioxides. Chem. Pharm. Bull. 47, 1730–1733 (1999).

Article  CAS  Google Scholar 

Jeran, M., Cotman, A. E., Stephan, M. & Mohar, B. Stereopure functionalized benzosultams via ruthenium(II)-catalyzed dynamic kinetic resolution-asymmetric transfer hydrogenation. Org. Lett. 19, 2042–2045 (2017).

Article  CAS  PubMed  Google Scholar 

Yu, C. B., Gao, K., Wang, D. S., Shi, L. & Zhou, Y. G. Enantioselective Pd-catalyzed hydrogenation of enesulfonamides. Chem. Commun. 47, 5052–5054 (2011).

Article  CAS  Google Scholar 

Cao, Y. Q., Luo, C. Y., Yang, P., Li, P. & Wu, C. L. Indazole scaffold: a generalist for marketed and clinical drugs. Med. Chem. Res. 30, 501–518 (2021).

Article  CAS  Google Scholar 

Holden, C. M. & Greaney, M. F. Modern aspects of the Smiles rearrangement. Chem. Eur. J. 23, 8992–9008 (2017).

Article  CAS  PubMed  Google Scholar 

Snape, T. J. A truce on the Smiles rearrangement: revisiting an old reaction—the Truce–Smiles rearrangement. Chem. Soc. Rev. 37, 2452–2458 (2008).

留言 (0)

沒有登入
gif