Activity-based directed evolution of a membrane editor in mammalian cells

Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).

Article  CAS  PubMed  Google Scholar 

Prinz, W. A., Toulmay, A. & Balla, T. The functional universe of membrane contact sites. Nat. Rev. Mol. Cell Biol. 21, 7–24 (2020).

Article  CAS  PubMed  Google Scholar 

Cheng, X. & Smith, J. C. Biological membrane organization and cellular signaling. Chem. Rev. 119, 5849–5880 (2019).

Article  CAS  PubMed  Google Scholar 

Tei, R. & Baskin, J. M. Induced proximity tools for precise manipulation of lipid signaling. Curr. Opin. Chem. Biol. 65, 93–100 (2021).

Article  CAS  PubMed  Google Scholar 

Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discov. 19, 839–859 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flores, J., White, B. M., Brea, R. J., Baskin, J. M. & Devaraj, N. K. Lipids: chemical tools for their synthesis, modification and analysis. Chem. Soc. Rev. 49, 4602–4614 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsuchiya, M., Tamura, T. & Hamachi, I. Organelle-selective labeling of choline-containing phospholipids (CPLs) and real-time imaging in living cells. Curr. Protoc. 1, e105 (2021).

Article  CAS  PubMed  Google Scholar 

Varnai, P., Thyagarajan, B., Rohacs, T. & Balla, T. Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J. Cell Biol. 175, 377–382 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suh, B.-C., Inoue, T., Meyer, T. & Hille, B. Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314, 1454–1457 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zoncu, R. et al. Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate. Proc. Natl Acad. Sci. USA 104, 3793–3798 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hammond, G. R. V. et al. PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 337, 727–730 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Idevall-Hagren, O., Dickson, E. J., Hille, B., Toomre, D. K. & Camilli, P. D. Optogenetic control of phosphoinositide metabolism. Proc. Natl Acad. Sci. USA 109, E2316–E2323 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tanguy, E., Wang, Q., Moine, H. & Vitale, N. Phosphatidic acid: from pleiotropic functions to neuronal pathology. Front. Cell. Neurosci. 13, 2 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Athenstaedt, K. & Daum, G. Phosphatidic acid, a key intermediate in lipid metabolism. Eur. J. Biochem. 266, 1–16 (1999).

Article  CAS  PubMed  Google Scholar 

Selvy, P. E., Lavieri, R. R., Lindsley, C. W. & Brown, H. A. Phospholipase D: enzymology, functionality and chemical modulation. Chem. Rev. 111, 6064–6119 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bumpus, T. W., Liang, F. J. & Baskin, J. M. Ex uno plura: differential labeling of phospholipid biosynthetic pathways with a single bioorthogonal alcohol. Biochemistry 57, 226–230 (2018).

Article  CAS  PubMed  Google Scholar 

Liang, D. et al. A real-time, click chemistry imaging approach reveals stimulus-specific subcellular locations of phospholipase D activity. Proc. Natl Acad. Sci. USA 116, 15453–15462 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tei, R. & Baskin, J. M. Click chemistry and optogenetic approaches to visualize and manipulate phosphatidic acid signaling. J. Biol. Chem. 298, 101810 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tei, R. & Baskin, J. M. Spatiotemporal control of phosphatidic acid signaling with optogenetic, engineered phospholipase Ds. J. Cell Biol. 219, e201907013 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carrea, G. et al. Purification and properties of two phospholipases D from Streptomyces sp. Biochim. Biophys. Acta 1255, 273–279 (1995).

Article  PubMed  Google Scholar 

Yang, H. & Roberts, M. F. Phosphohydrolase and transphosphatidylation reactions of two Streptomyces phospholipase D enzymes: covalent versus noncovalent catalysis. Protein Sci. Publ. Protein Soc. 12, 2087–2098 (2003).

Article  CAS  Google Scholar 

Wang, Y. et al. Directed evolution: methodologies and applications. Chem. Rev. 121, 12384–12444 (2021).

Article  CAS  PubMed  Google Scholar 

Gargiulo, S. & Soumillion, P. Directed evolution for enzyme development in biocatalysis. Curr. Opin. Chem. Biol. 61, 107–113 (2021).

Article  CAS  PubMed  Google Scholar 

Sheludko, Y. V. & Fessner, W.-D. Winning the numbers game in enzyme evolution—fast screening methods for improved biotechnology proteins. Curr. Opin. Struct. Biol. 63, 123–133 (2020).

Article  CAS  PubMed  Google Scholar 

van Meer, G. & de Kroon, A. I. P. M. Lipid map of the mammalian cell. J. Cell Sci. 124, 5–8 (2011).

Article  PubMed  Google Scholar 

Kesidis, A. et al. Expression of eukaryotic membrane proteins in eukaryotic and prokaryotic hosts. Methods 180, 3–18 (2020).

Article  CAS  PubMed  Google Scholar 

Hendel, S. J. & Shoulders, M. D. Directed evolution in mammalian cells. Nat. Methods 18, 346–357 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Könning, D. & Kolmar, H. Beyond antibody engineering: directed evolution of alternative binding scaffolds and enzymes using yeast surface display. Microb. Cell Fact. 17, 32 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Kennedy, M. J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bumpus, T. W. & Baskin, J. M. Clickable substrate mimics enable imaging of phospholipase D activity. ACS Cent. Sci. 3, 1070–1077 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bumpus, T. W., Liang, D. & Baskin, J. M. IMPACT: imaging phospholipase D activity with clickable alcohols via transphosphatidylation. Methods Enzymol 641, 75–94 (2020).

Article  CAS  PubMed  Google Scholar 

Zhang, F. et al. Temporal production of the signaling lipid phosphatidic acid by phospholipase D2 determines the output of extracellular signal-regulated kinase signaling in cancer cells. Mol. Cell. Biol. 34, 84–95 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosano, G. L. & Ceccarelli, E. A. Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5, 172 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Zambonelli, C. et al. Cloning and expression in Escherichia coli of the gene encoding Streptomyces PMF PLD, a phospholipase D with high transphosphatidylation activity. Enzyme Microb. Technol. 33, 676–688 (2003).

Article  CAS  Google Scholar 

Allegretti, C., Denuccio, F., Rossato, L. & D’Arrigo, P. Polar head modified phospholipids by phospholipase D-catalyzed transformations of natural phosphatidylcholine for targeted applications: an overview. Catalysts 10, 997 (2020).

Article  CAS 

留言 (0)

沒有登入
gif