Spin-dependent reactivity and spin-flipping dynamics in oxygen atom scattering from graphite

Casavecchia, P., Balucani, N., Alagia, M., Cartechini, L. & Volpi, G. G. Reactive scattering of oxygen and nitrogen atoms. Acc. Chem. Res. 32, 503–511 (1999).

Article  CAS  Google Scholar 

Alagia, M. et al. Crossed molecular beams and quasiclassical trajectory studies of the reaction O(1D) + H2(D2). J. Chem. Phys. 108, 6698–6708 (1998).

Article  CAS  Google Scholar 

Garton, D. J., Minton, T. K., Maiti, B., Troya, D. & Schatz, G. C. A crossed molecular beams study of the O(3P) + H2 reaction: comparison of excitation function with accurate quantum reactive scattering calculations. J. Chem. Phys. 118, 1585–1588 (2003).

Article  CAS  Google Scholar 

Marian, C. M. Understanding and controlling intersystem crossing in molecules. Annu. Rev. Phys. Chem. 72, 617–640 (2021).

Article  CAS  PubMed  Google Scholar 

Cui, Q., Morokuma, K., Bowman, J. M. & Klippenstein, S. J. The spin-forbidden reaction CH(2Π) + N2 → HCN + N(4S) revisited. II. Nonadiabatic transition state theory and application. J. Chem. Phys. 110, 9469–9482 (1999).

Article  CAS  Google Scholar 

Österlund, L., Zorić, I. & Kasemo, B. Dissociative sticking of O2 on Al(111). Phys. Rev. B 55, 15452–15455 (1997).

Article  Google Scholar 

Behler, J., Delley, B., Lorenz, S., Reuter, K. & Scheffler, M. Dissociation of O2 at Al(111): the role of spin selection rules. Phys. Rev. Lett. 94, 036104 (2005).

Article  PubMed  Google Scholar 

Behler, J., Reuter, K. & Scheffler, M. Nonadiabatic effects in the dissociation of oxygen molecules at the Al(111) surface. Phys. Rev. B 77, 115421 (2008).

Article  Google Scholar 

Libisch, F., Huang, C., Liao, P., Pavone, M. & Carter, E. A. Origin of the energy barrier to chemical reactions of O2 on Al(111): evidence for charge transfer, not spin selection. Phys. Rev. Lett. 109, 198303 (2012).

Article  PubMed  Google Scholar 

Yin, R. et al. Dissociative chemisorption of O2 on Al(111): dynamics on a correlated wave-function-based potential energy surface. J. Phys. Chem. Lett. 9, 3271–3277 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borodin, D. et al. Quantum effects in thermal reaction rates at metal surfaces. Science 377, 394–398 (2022).

Article  CAS  PubMed  Google Scholar 

Kretchmer, J. S. & Chan, G. K.-L. The fate of atomic spin in atomic scattering off surfaces. J. Phys. Chem. Lett. 9, 2863–2868 (2018).

Article  CAS  PubMed  Google Scholar 

Barber, M., Evans, E. L. & Thomas, J. M. Oxygen chemisorption on the basal faces of graphite: an XPS study. Chem. Phys. Lett. 18, 423–425 (1973).

Article  CAS  Google Scholar 

Incze, A., Pasturel, A. & Chatillon, C. First-principles study of the atomic oxygen adsorption on the (0001) graphite surface and dissolution. Appl. Surf. Sci. 177, 226–229 (2001).

Article  CAS  Google Scholar 

Incze, A., Pasturel, A. & Chatillon, C. Oxidation of graphite by atomic oxygen: a first-principles approach. Surf. Sci. 537, 55–63 (2003).

Article  CAS  Google Scholar 

Paci, J. T., Upadhyaya, H. P., Zhang, J., Schatz, G. C. & Minton, T. K. Theoretical and experimental studies of the reactions between hyperthermal O(3P) and graphite: graphene-based direct dynamics and beam-surface scattering approaches. J. Phys. Chem. A 113, 4677–4685 (2009).

Article  CAS  PubMed  Google Scholar 

Goverapet Srinivasan, S. & van Duin, A. C. T. Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the ReaxFF reactive force field. J. Phys. Chem. A 115, 13269–13280 (2011).

Article  CAS  Google Scholar 

Morón, V. et al. Classical dynamics study of atomic oxygen over graphite (0001) with new interpolated and analytical potential energy surfaces. Comput. Theor. Chem. 990, 132–143 (2012).

Article  Google Scholar 

Xu, S. C., Chen, H.-L. & Lin, M. C. Quantum chemical prediction of reaction pathways and rate constants for the reactions of Ox (x = 1 and 2) with pristine and defective graphite (0001) surfaces. J. Phys. Chem. C 116, 1841–1849 (2012).

Article  CAS  Google Scholar 

Paci, J. T., Minton, T. K. & Schatz, G. C. Hyperthermal oxidation of graphite and diamond. Acc. Chem. Res. 45, 1973–1981 (2012).

Article  CAS  PubMed  Google Scholar 

Murray, V. J., Smoll, E. J. & Minton, T. K. Dynamics of graphite oxidation at high temperature. J. Phys. Chem. C 122, 6602–6617 (2018).

Article  CAS  Google Scholar 

Jayee, B., Nieman, R., Minton, T. K., Hase, W. L. & Guo, H. Direct dynamics simulations of hyperthermal O(3P) collisions with pristine, defected, oxygenated and nitridated graphene surfaces. J. Phys. Chem. C 125, 9795–9808 (2021).

Article  CAS  Google Scholar 

Cardinaud, C., Peignon, M.-C. & Tessier, P.-Y. Plasma etching: principles, mechanisms, application to micro- and nano-technologies. Appl. Surf. Sci. 164, 72–83 (2000).

Article  CAS  Google Scholar 

Lu, X., Huang, H., Nemchuk, N. & Ruoff, R. S. Patterning of highly oriented pyrolytic graphite by oxygen plasma etching. Appl. Phys. Lett. 75, 193–195 (1999).

Article  CAS  Google Scholar 

Jia, P., Pan, F. & Chen, T. Effect of oxygen plasma etching on graphene’s mechanical and electrical properties. IOP Conf. Ser. Mater. Sci. Eng. 182, 012030 (2017).

Article  Google Scholar 

Al-Mumen, H., Rao, F., Li, W. & Dong, L. Singular sheet etching of graphene with oxygen plasma. Nano Micro Lett. 6, 116–124 (2014).

Article  Google Scholar 

Isborn, C. M., Li, X. & Tully, J. C. Time-dependent density functional theory Ehrenfest dynamics: collisions between atomic oxygen and graphite clusters. J. Chem. Phys. 126, 134307 (2007).

Article  PubMed  Google Scholar 

Morón, V., Martin-Gondre, L., Gamallo, P. & Sayós, R. Quasiclassical trajectory dynamics study of atomic oxygen collisions on an O-preadsorbed graphite (0001) surface with a new analytical potential energy surface. J. Phys. Chem. C 116, 13092–13103 (2012).

Article  Google Scholar 

Murray, V. J. et al. Gas-surface scattering dynamics applied to concentration of gases for mass spectrometry in tenuous atmospheres. J. Phys. Chem. C 121, 7903–7922 (2017).

Article  CAS  Google Scholar 

Zhu, Y. F. & Gordon, R. J. The production of O(3P) in the 157-nm photodissociation of CO2. J. Chem. Phys. 92, 2897–2901 (1990).

Article  CAS  Google Scholar 

Quan, J. et al. A free electron laser-based 1 + 1′ resonance-enhanced multiphoton ionization scheme for rotationally resolved detection of OH radicals with correct relative intensities. J. Mol. Spectrosc. 380, 111509 (2021).

Article  CAS  Google Scholar 

Lu, I. C., Huang, W.-J., Chaudhuri, C., Chen, W.-K. & Lee, S.-H. Development of a stable source of atomic oxygen with a pulsed high-voltage discharge and its application to crossed-beam reactions. Rev. Sci. Instrum. 78, 083103 (2007).

Article  PubMed  Google Scholar 

Harding, D. J., Neugebohren, J., Auerbach, D. J., Kitsopoulos, T. N. & Wodtke, A. M. Using ion imaging to measure velocity distributions in surface scattering experiments. J. Phys. Chem. A 119, 12255–12262 (2015).

Article  CAS  PubMed  Google Scholar 

Harding, D. J. et al. Ion and velocity map imaging for surface dynamics and kinetics. J. Chem. Phys. 147, 013939 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Neugebohren, J. et al. Velocity-resolved kinetics of site-specific carbon monoxide oxidation on platinum surfaces. Nature 558, 280–283 (2018).

Article  CAS  PubMed  Google Scholar 

Park, G. B. et al. The kinetics of elementary thermal reactions in heterogeneous catalysis. Nat. Rev. Chem. 3, 723–732 (2019).

Article  Google Scholar 

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

Article  CAS  Google Scholar 

Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

Article  CAS  Google Scholar 

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Article  CAS  PubMed  Google Scholar 

Zhang, Y., Hu, C. & Jiang, B. Embedded atom neural network potentials: efficient and accurate machine learning with a physically inspired representation. J. Phys. Chem. Lett. 10, 4962–4967 (2019).

Article  CAS  PubMed  Google Scholar 

Zhao, Z. et al. Supplementary data for ‘Spin-dependent reactivity and spin-flipping dynamics in O atom scattering from graphite’ Zenodo https://doi.org/10.5281/zenodo.7743197 (2023).

留言 (0)

沒有登入
gif