A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects

Savoia, A. S., Caliano, G. & Pappalardo, M. A CMUT probe for medical ultrasonography: from microfabrication to system integration. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1127–1138 (2012).

Article  PubMed  Google Scholar 

Shung, K. K., Cannata, J. & Zhou, Q. Piezoelectric materials for high frequency medical imaging applications: a review. J. Electroceram. 19, 141–147 (2007).

Article  Google Scholar 

Rothberg, J. M. et al. Ultrasound-on-chip platform for medical imaging, analysis, and collective intelligence. Proc. Natl Acad. Sci. USA 118, e2019339118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brattain, L. J., Telfer, B. A., Dhyani, M., Grajo, J. R. & Samir, A. E. Machine learning for medical ultrasound: status, methods, and future opportunities. Abdom. Radiol. 43, 786–799 (2018).

Article  Google Scholar 

Liu, S. et al. Deep learning in medical ultrasound analysis: a review. Engineering 5, 261–275 (2019).

Article  Google Scholar 

Powers, J. & Kremkau, F. Medical ultrasound systems. Interface Focus 1, 477–489 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Moran, C. M. & Thomson, A. J. Preclinical ultrasound imaging—a review of techniques and imaging applications. Front. Phys. 8, 124 (2020).

Article  Google Scholar 

Jensen, J. A. Medical ultrasound imaging. Prog. Biophys. Mol. Biol. 93, 153–165 (2007).

Article  PubMed  Google Scholar 

Price, D., Wallbridge, D. & Stewart, M. Tissue Doppler imaging: current and potential clinical applications. Heart 84 (Suppl. 2), ii11–ii18 (2000).

Sigrist, R. M., Liau, J., El Kaffas, A., Chammas, M. C. & Willmann, J. K. Ultrasound elastography: review of techniques and clinical applications. Theranostics 7, 1303 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Poelma, C. Ultrasound imaging velocimetry: a review. Exp. Fluids 58, 3 (2017).

Article  Google Scholar 

Kasban, H., El-Bendary, M. & Salama, D. A comparative study of medical imaging techniques. Int. J. Inf. Sci. Intell. Syst. 4, 37–58 (2015).

Google Scholar 

Kalender, W. A. X-ray computed tomography. Phys. Med. Biol. 51, R29 (2006).

Article  PubMed  Google Scholar 

Katti, G., Ara, S. A. & Shireen, A. Magnetic resonance imaging (MRI)—a review. Int. J. Dent. Clin. 3, 65–70 (2011).

Google Scholar 

Díaz-Gómez, J. L., Mayo, P. H. & Koenig, S. J. Point-of-care ultrasonography. N. Engl. J. Med. 385, 1593–1602 (2021).

Article  PubMed  Google Scholar 

Kenny, J.-É. S. et al. A novel, hands-free ultrasound patch for continuous monitoring of quantitative Doppler in the carotid artery. Sci. Rep. 11, 7780 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu, H. et al. Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces. Sci. Adv. 4, eaar3979 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Wang, C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687–695 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Wang, C. et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat. Biomed. Eng. 5, 749–758 (2021).

Article  CAS  PubMed  Google Scholar 

Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).

Article  CAS  PubMed  Google Scholar 

The Ultrasound Monitoring Patch (Pulsify Medical, 2016); https://pulsify-medical.com/

Project Ulimpia (Penta, 2021); https://penta-eureka.eu/wp-content/uploads/2022/02/Penta_Project-Ulimpia_Impact_Summary-18_11_2021.pdf

Baribeau, Y. et al. Handheld point-of-care ultrasound probes: the new generation of POCUS. J. Cardiothorac. Vasc. Anesth. 34, 3139–3145 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Hu, H. et al. A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin, M., Hu, H., Zhou, S. & Xu, S. Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022).

Article  Google Scholar 

IEEE Standard for Information Technology–Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks-Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (IEEE, 2016); https://standards.ieee.org/ieee/802.11/5536/

Carovac, A., Smajlovic, F. & Junuzovic, D. Application of ultrasound in medicine. Acta Inform. Med. 19, 168 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Feigenbaum, H. Role of M-mode technique in today’s echocardiography. J. Am. Soc. Echocardiogr. 23, 240–257 (2010).

Article  PubMed  Google Scholar 

Gamble, G., Zorn, J., Sanders, G., MacMahon, S. & Sharpe, N. Estimation of arterial stiffness, compliance, and distensibility from M-mode ultrasound measurements of the common carotid artery. Stroke 25, 11–16 (1994).

Article  CAS  PubMed  Google Scholar 

Testa, A. et al. Ultrasound M-mode assessment of diaphragmatic kinetics by anterior transverse scanning in healthy subjects. Ultrasound Med. Biol. 37, 44–52 (2011).

Article  PubMed  Google Scholar 

Prada, G. et al. Echocardiographic applications of M-mode ultrasonography in anesthesiology and critical care. J. Cardiothorac. Vasc. Anesth. 33, 1559–1583 (2019).

Article  PubMed  Google Scholar 

Stabouli, S. et al. Comparison of the SphygmoCor XCEL device with applanation tonometry for pulse wave velocity and central blood pressure assessment in youth. J. Hypertens. 37, 30–36 (2019).

Article  CAS  PubMed  Google Scholar 

Elliot, C. A., Hamlin, M. J. & Lizamore, C. A. Inter-operator reliability for measuring pulse wave velocity and augmentation index. Front. Cardiovasc. Med. 7, 72 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoesein, F. A. M., Zanen, P. & Lammers, J.-W. J. Lower limit of normal or FEV1/FVC <0.70 in diagnosing COPD: an evidence-based review. Respir. Med. 105, 907–915 (2011).

Article  Google Scholar 

Johnson, J. D. & Theurer, W. M. A stepwise approach to the interpretation of pulmonary function tests. Am. Fam. Physician 89, 359–366 (2014).

PubMed  Google Scholar 

Limbu, Y. R., Gurung, G., Malla, R., Rajbhandari, R. & Regmi, S. R. Assessment of carotid artery dimensions by ultrasound in non-smoker healthy adults of both sexes. Nepal Med. Coll. J. 8, 200–203 (2006).

PubMed  Google Scholar 

Morerio, P., Cavazza, J. & Murino, V. Minimal-entropy correlation alignment for unsupervised deep domain adaptation. In International Conference on Learning Representations (2018).

Magder, S. Volume and its relationship to cardiac output and venous return. Crit. Care 20, 271 (2016).

Article  Google Scholar 

White, D. W. & Raven, P. B. Autonomic neural control of heart rate during dynamic exercise: revisited. J. Physiol. 592, 2491–2500 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laughlin, M. H., Korthuis, R. J., Duncker, D. J. & Bache, R. J. in Comprehensive Physiology (ed. Terjung, R.) 705–769 (Wiley, 2011).

O’Rourke, M. F. & Mancia, G. Arterial stiffness. J. Hypertens. 17, 1–4 (1999).

Article  PubMed  Google Scholar 

Plowman, S. A. & Smith, D. L. Exercise Physiology for Health Fitness and Performance (Lippincott Williams & Wilkins, 2013).

Salvi, P. Pulse Waves: How Vascular Hemodynamics Affects Blood Pressure 19–68 (Springer, 2017).

Munir, S. et al. Exercise reduces arterial pressure augmentation through vasodilation of muscular arteries in humans. Am. J. Physiol. Heart. Circ. Physiol. 294, H1645–H1650 (2008).

Article  CAS  PubMed  Google Scholar 

Antonini-Canterin, F. et al. Arterial stiffness and ventricular stiffness: a couple of diseases or a coupling disease? A review from the cardiologist’s point of view. Eur. J. Echocardiogr. 10, 36–43 (2008).

Article  PubMed  Google Scholar 

Brett, S. E., Ritter, J. M. & Chowienczyk, P. J. Diastolic blood pressure changes during exercise positively correlate with serum cholesterol and insulin resistance. Circulation 101, 611–615 (2000).

Article  CAS  PubMed  Google Scholar 

Scolletta, S., Biagioli, B. & Giomarelli, P. in Anaesthesia, Pain, Intensive Care and Emergency A.P.I.C.E. (ed Gullo, A.) Ch 21 (Springer, 2007).

Stöhr, E. J., González-Alonso, J. & Shave, R. Left ventricular mechanical limitations to stroke volume in healthy humans during incremental exercise. Am. J. Physiol. Heart. Circ. Physiol. 301, H478–H487 (2011).

Article  PubMed  Google Scholar 

Vieira, S. S. et al. Does stroke volume increase during an incremental exercise? A systematic review. Open Cardiovasc. Med. J. 10, 57 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glynn, A. J. et al. The Physiotherapist’s Pocket Guide to Exercise E-Book: Assessment, Prescription and Training (Elsevier, 2009).

Guiraud, T. et al. High-intensity interval training in cardiac rehabilitation. Sports Med. 42, 587–605 (2012).

留言 (0)

沒有登入
gif