Multifunctional antibacterial bioactive nanoglass hydrogel for normal and MRSA infected wound repair

Ebaid H, Ahmed OM, Mahmoud AM, Ahmed RR. Limiting prolonged inflammation during proliferation and remodeling phases of wound healing in streptozotocin-induced diabetic rats supplemented with camel undenatured whey protein. BMC Immunol. 2013;14:31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Komi DEA, Khomtchouk K, Santa Maria PL. A review of the contribution of mast cells in wound healing: involved molecular and cellular mechanisms. Clin Rev Allerg Immu. 2020;58:298–312.

Article  CAS  Google Scholar 

Yan X, Fang W-W, Xue J, Sun T-C, Dong L, Zha Z, Qian H, Song Y-H, Zhang M, Gong X, et al. Thermoresponsive in situ forming hydrogel with sol–gel irreversibility for effective methicillin-resistant staphylococcus aureus infected wound healing. ACS Nano. 2019;13:10074–84.

Article  CAS  PubMed  Google Scholar 

Zuo Y-M, Yan X, Xue J, Guo L-Y, Fang W-W, Sun T-C, Li M, Zha Z, Yu Q, Wang Y, et al. Enzyme-responsive ag nanoparticle assemblies in targeting antibacterial against methicillin-resistant staphylococcus aureus. ACS Appl Mater Interfaces. 2020;12:4333–42.

Article  CAS  PubMed  Google Scholar 

Qian L-W, Fourcaudot AB, Yamane K, You T, Chan RK, Leung KP. Exacerbated and prolonged inflammation impairs wound healing and increases scarring. Wound Repair Regen. 2016;24:26–34.

Article  PubMed  Google Scholar 

Kim SY, Nair MG. Macrophages in wound healing: activation and plasticity. Immunol Cell Biol. 2019;97:258–67.

Article  PubMed  PubMed Central  Google Scholar 

Liu W, Wang M, Cheng W, Niu W, Chen M, Luo M, Xie C, Leng T, Zhang L, Lei B. Bioactive antiinflammatory antibacterial hemostatic citrate-based dressing with macrophage polarization regulation for accelerating wound healing and hair follicle neogenesis. Bioact Mater. 2021;6:721–8.

Article  CAS  PubMed  Google Scholar 

Taati Moghadam M, Khoshbayan A. Bacteriophages, a new therapeutic solution for inhibiting multidrug-resistant bacteria causing wound infection: lesson from animal models and clinical trials. Drug Des Dev Ther. 2020;14:1867–83.

Article  Google Scholar 

Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10:122–S129.

Article  Google Scholar 

Klompas M. Overuse of broad-spectrum antibiotics for pneumonia. JAMA Intern Med. 2020;180:485–6.

Article  CAS  PubMed  Google Scholar 

Liu W, Ou-Yang W, Zhang C, Wang Q, Pan X, Huang P, Zhang C, Li Y, Kong D, Wang W. Synthetic polymeric antibacterial hydrogel for methicillin-resistant staphylococcus aureus-infected wound healing: nanoantimicrobial self-assembly, drug- and cytokine-free strategy. ACS Nano. 2020;14:12905–17.

Article  CAS  PubMed  Google Scholar 

Johnson-Jahangir H, Agrawal N. Perioperative antibiotic use in cutaneous surgery. Dermatol Clin. 2019;37:329–40.

Article  CAS  PubMed  Google Scholar 

Jones JR. Review of bioactive glass: from hench to hybrids. Acta Biomater. 2013;9:4457–86.

Article  CAS  PubMed  Google Scholar 

Chen M, Winston DD, Wang M, Niu W, Cheng W, Guo Y, Wang Y, Luo M, Xie C, Leng T, et al. Hierarchically multifunctional bioactive nanoglass for integrated tumor/infection therapy and impaired wound repair. Mater Today. 2022;53:27–40.

Article  CAS  Google Scholar 

Yang C, Wang X, Ma B, Zhu H, Huan Z, Ma N, Wu C, Chang J. 3D-printed bioactive Ca3SiO5 bone cement scaffolds with nano surface structure for bone regeneration. ACS Appl Mater Interfaces. 2017;9:5757–67.

Article  CAS  PubMed  Google Scholar 

Niu W, Chen M, Guo Y, Wang M, Luo M, Cheng W, Wang Y, Lei B. A multifunctional bioactive glass-ceramic nanodrug for post-surgical infection/cancer therapy-tissue regeneration. ACS Nano. 2021;15:14323–37.

Article  CAS  PubMed  Google Scholar 

Yu M, Xue Y, Ma PX, Mao C, Lei B. Intrinsic ultrahigh drug/miRNA loading capacity of biodegradable bioactive glass nanoparticles toward highly efficient pharmaceutical delivery. ACS Appl Mater Interfaces. 2017;9:8460–70.

Article  CAS  PubMed  Google Scholar 

Guo Y, Xue Y, Ge J, Lei B. Monodispersed β-glycerophosphate-decorated bioactive glass nanoparticles reinforce osteogenic differentiation of adipose stem cells and bone regeneration in vivo. Part Part Syst Char. 2020;37:1900462.

Article  CAS  Google Scholar 

Niu W, Guo Y, Xue Y, Wang M, Chen M, Winston DD, Cheng W, Lei B. Biodegradable multifunctional bioactive Eu-Gd-Si-Ca glass nanoplatform for integrative imaging-targeted tumor therapy-recurrence inhibition-tissue repair. Nano Today. 2021;38:101137.

Article  CAS  Google Scholar 

Li Y, Xu T, Tu Z, Dai W, Xue Y, Tang C, Gao W, Mao C, Lei B, Lin C. Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair. Theranostics. 2020;10:4929–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Lu W-L, Wang J-C, Zhang X, Zhang H, Wang X-Q, Zhou T-Y, Zhang Q. Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic® F127 hydrogel for subcutaneous administration: in vitro and in vivo characterization. J Control Release. 2007;117:387–95.

Article  CAS  PubMed  Google Scholar 

Schmolka IR. Artificial skin I. Preparation and properties of pluronic F-127 gels for treatment of burns. J Biomed Mater Res. 1972;6:571–82.

Article  CAS  PubMed  Google Scholar 

Sharma PK, Bhatia SR. Effect of anti-inflammatories on Pluronic® F127: micellar assembly, gelation and partitioning. Int J Pharmaceut. 2004;278:361–77.

Article  CAS  Google Scholar 

Johnston TP, Miller SC. Toxicological evaluation of poloxamer vehicles for intramuscular use. PDA J Pharmaceut Sci Tech. 1985;39:83–9.

CAS  Google Scholar 

Ge J, Li Y, Wang M, Gao C, Yang S, Lei B. Engineering conductive antioxidative antibacterial nanocomposite hydrogel scaffolds with oriented channels promotes structure-functional skeletal muscle regeneration. Chem Eng J. 2021;425:130333.

Article  CAS  Google Scholar 

Zheng H, Wang S, Zhou L, He X, Cheng Z, Cheng F, Liu Z, Wang X, Chen Y, Zhang Q. Injectable multi-responsive micelle/nanocomposite hybrid hydrogel for bioenzyme and photothermal augmented chemodynamic therapy of skin cancer and bacterial infection. Chem Eng J. 2021;404:126439.

Article  CAS  Google Scholar 

Wang M, Wang C, Chen M, Xi Y, Cheng W, Mao C, Xu T, Zhang X, Lin C, Gao W, et al. Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release. ACS Nano. 2019;13:10279–93.

Article  CAS  PubMed  Google Scholar 

Bhattacharjee M, Escobar Ivirico JL, Kan HM, Shah S, Otsuka T, Bordett R, Barajaa M, Nagiah N, Pandey R, Nair LS, Laurencin CT. Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment. Proc Natl Acad Sci. 2022. https://doi.org/10.1073/pnas.2120968119.

Article  PubMed  PubMed Central  Google Scholar 

Dimatteo R, Darling NJ, Segura T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv Drug Deliver Rev. 2018;127:167–84.

Article  CAS  Google Scholar 

Zhou L, Xi Y, Xue Y, Wang M, Liu Y, Guo Y, Lei B. Injectable self-healing antibacterial bioactive polypeptide-based hybrid nanosystems for efficiently treating multidrug resistant infection, skin-tumor therapy, and enhancing wound healing. Adv Funct Mater. 2019;29:1806883.

Article  Google Scholar 

Wang X, Cheng F, Liu J, Smått J-H, Gepperth D, Lastusaari M, Xu C, Hupa L. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Acta Biomater. 2016;46:286–98.

Article  CAS  PubMed  Google Scholar 

Rau JV, Curcio M, Raucci MG, Barbaro K, Fasolino I, Teghil R, Ambrosio L, De Bonis A, Boccaccini AR. Cu-releasing bioactive glass coatings and their in vitro properties. ACS Appl Mater Interfaces. 2019;11:5812–20.

Article  CAS  PubMed  Google Scholar 

Dong X, Chang J, Li H. Bioglass promotes wound healing through modulating the paracrine effects between macrophages and repairing cells. J Mater Chem B. 2017;5:5240–50.

Article  CAS  PubMed  Google Scholar 

Zhu Y, Ma Z, Kong L, He Y, Chan HF, Li H. Modulation of macrophages by bioactive glass/sodium alginate hydrogel is crucial in skin regeneration enhancement. Biomaterials. 2020;256:120216.

Article  CAS  PubMed  Google Scholar 

Lin R, Deng C, Li X, Liu Y, Zhang M, Qin C, Yao Q, Wang L, Wu C. Copper-incorporated bioactive glass-ceramics inducing anti-inflammatory phenotype and regeneration of cartilage/bone interface. Theranostics. 2019;9:6300–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jung K, Kim J, Ahn G, Matsuda H, Akane T, Ahn M, Shin T. Alendronate alleviates the symptoms of experimental autoimmune encephalomyelitis. Int Immunopharmacol. 2020;84:106534.

Article  CAS  PubMed  Google Scholar 

Menezes AMA, Rocha FAC, Chaves HV, Carvalho CBM, Ribeiro RA, Brito GAC. Effect of sodium alendronate on alveolar bone resorption in experimental periodontitis in rats. J Periodontol. 2005;76:1901–9.

留言 (0)

沒有登入
gif