Dysregulation of miRNA-30e-3p targeting IL-1β in an international cohort of systemic autoinflammatory disease patients

Georgin-Lavialle S, Fayand A, Rodrigues F, Bachmeyer C, Savey L, Grateau G (2019) Autoinflammatory diseases: state of the art. Presse Med 48:e25–e48. https://doi.org/10.1016/j.lpm.2018.12.003

Article  PubMed  Google Scholar 

Harapas CR, Steiner A, Davidson S, Masters SL (2018) An update on autoinflammatory diseases: inflammasomopathies. Curr Rheumatol Rep 20:40. https://doi.org/10.1007/s11926-018-0750-4

Article  CAS  PubMed  Google Scholar 

McDermott MF, Aksentijevich I, Galon J, McDermott EM, Ogunkolade BW, Centola M, Mansfield E, Gadina M, Karenko L, Pettersson T et al (1999) Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97:133–144. https://doi.org/10.1016/s0092-8674(00)80721-7

Article  CAS  PubMed  Google Scholar 

Manthiram K, Zhou Q, Aksentijevich I, Kastner DL (2017) The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat Immunol 18:832–842. https://doi.org/10.1038/ni.3777

Article  CAS  PubMed  Google Scholar 

van Kempen TS, Wenink MH, Leijten EF, Radstake TR, Boes M (2015) Perception of self: distinguishing autoimmunity from autoinflammation. Nat Rev Rheumatol 11:483–492. https://doi.org/10.1038/nrrheum.2015.60

Article  CAS  PubMed  Google Scholar 

Zhou X, Li X, Wu M (2018) miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct Target Ther 3:14. https://doi.org/10.1038/s41392-018-0006-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akkaya-Ulum YZ, Balci-Peynircioglu B, Karadag O, Eroglu FK, Kalyoncu U, Kiraz S, Ertenli AI, Özen S, Yilmaz E (2017) Alteration of the microRNA expression profile in familial Mediterranean fever patients. Clin Exp Rheumatol 35(Suppl 108):90–94

PubMed  Google Scholar 

Akkaya-Ulum YZ, Akbaba TH, Tavukcuoglu Z, Chae JJ, Yilmaz E, Ozen S, Balci-Peynircioglu B (2021) Familial Mediterranean fever-related miR-197-3p targets IL1R1 gene and modulates inflammation in monocytes and synovial fibroblasts. Sci Rep 11:685. https://doi.org/10.1038/s41598-020-80097-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Latsoudis H, Mashreghi MF, Grün JR, Chang HD, Stuhlmüller B, Repa A, Gergiannaki I, Kabouraki E, Vlachos GS, Häupl T et al (2017) Differential expression of miR-4520a associated with pyrin mutations in Familial Mediterranean Fever (FMF). J Cell Physiol 232:1326–1336. https://doi.org/10.1002/jcp.25602

Article  CAS  PubMed  Google Scholar 

Wada T, Toma T, Matsuda Y, Yachie A, Itami S, Taguchi YH, Murakami Y (2017) Microarray analysis of circulating microRNAs in familial Mediterranean fever. Mod Rheumatol 27:1040–1046. https://doi.org/10.1080/14397595.2017.1285845

Article  CAS  PubMed  Google Scholar 

Koga T, Migita K, Sato T, Sato S, Umeda M, Nonaka F, Fukui S, Kawashiri SY, Iwamoto N, Ichinose K et al (2018) MicroRNA-204-3p inhibits lipopolysaccharide-induced cytokines in familial Mediterranean fever via the phosphoinositide 3-kinase gamma pathway. Rheumatology (Oxford) 57:718–726. https://doi.org/10.1093/rheumatology/kex451

Article  CAS  PubMed  Google Scholar 

Lucherini OM, Obici L, Ferracin M, Fulci V, McDermott MF, Merlini G, Muscari I, Magnotti F, Dickie LJ, Galeazzi M et al (2013) First report of circulating microRNAs in tumour necrosis factor receptor-associated periodic syndrome (TRAPS). PLoS ONE 8:e73443–e73443. https://doi.org/10.1371/journal.pone.0073443

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V (2012) NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol 189:4175–4181. https://doi.org/10.4049/jimmunol.1201516

Article  CAS  PubMed  Google Scholar 

Akbaba TH, Akkaya-Ulum YZ, Tavukcuoglu Z, Bilginer Y, Ozen S, Balci-Peynircioglu B (2021) Inflammation-related differentially expressed common miRNAs in systemic autoinflammatory disorders patients can regulate the clinical course. Clin Exp Rheumatol

Gattorno M, Hofer M, Federici S, Vanoni F, Bovis F, Aksentijevich I, Anton J, Arostegui JI, Barron K, Ben-Cherit E et al (2019) Classification criteria for autoinflammatory recurrent fevers. Ann Rheum Dis 78:1025–1032. https://doi.org/10.1136/annrheumdis-2019-215048

Article  CAS  PubMed  Google Scholar 

Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M (2021) KEGG: integrating viruses and cellular organisms. Nucleic Acids Res 49:D545-d551. https://doi.org/10.1093/nar/gkaa970

Article  CAS  PubMed  Google Scholar 

Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD (2018) PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 47:D419–D426. https://doi.org/10.1093/nar/gky1038

Article  CAS  PubMed Central  Google Scholar 

Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, Lachmann A, Wojciechowicz ML, Kropiwnicki E, Jagodnik KM et al (2021) Gene set knowledge discovery with Enrichr. Curr Protocols 1:e90. https://doi.org/10.1002/cpz1.90

Article  CAS  Google Scholar 

Consortium TGO (2020) The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res 49:D325–D334. https://doi.org/10.1093/nar/gkaa1113

Article  CAS  Google Scholar 

Clarke DJB, Jeon M, Stein DJ, Moiseyev N, Kropiwnicki E, Dai C, Xie Z, Wojciechowicz ML, Litz S, Hom J et al (2021) Appyters: turning Jupyter Notebooks into data-driven web apps. Patterns (N Y) 2:100213. https://doi.org/10.1016/j.patter.2021.100213

Article  PubMed  Google Scholar 

Otasek D, Morris JH, Bouças J, Pico AR, Demchak B (2019) Cytoscape automation: empowering workflow-based network analysis. Genome Biol 20:185. https://doi.org/10.1186/s13059-019-1758-4

Article  PubMed  PubMed Central  Google Scholar 

Hoffman HM, Broderick L (2016) The role of the inflammasome in patients with autoinflammatory diseases. J Allergy Clin Immunol 138:3–14. https://doi.org/10.1016/j.jaci.2016.05.001

Article  CAS  PubMed  Google Scholar 

Awad F, Assrawi E, Louvrier C, Jumeau C, Georgin-Lavialle S, Grateau G, Amselem S, Giurgea I, Karabina SA (2018) Inflammasome biology, molecular pathology and therapeutic implications. Pharmacol Ther 187:133–149. https://doi.org/10.1016/j.pharmthera.2018.02.011

Article  CAS  PubMed  Google Scholar 

Lindsay MA (2008) microRNAs and the immune response. Trends Immunol 29:343–351. https://doi.org/10.1016/j.it.2008.04.004

Article  CAS  PubMed  Google Scholar 

O’Connell RM, Rao DS, Baltimore D (2012) microRNA regulation of inflammatory responses. Annu Rev Immunol 30:295–312. https://doi.org/10.1146/annurev-immunol-020711-075013

Article  CAS  PubMed  Google Scholar 

Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6:1182–1190. https://doi.org/10.1038/ni1275

Article  CAS  PubMed  Google Scholar 

Chen Y, Wang Z, Chen X, Peng X, Nie Q (2021) CircNFIC balances inflammation and apoptosis by sponging miR-30e-3p and regulating DENND1B expression. Genes (Basel) 12. https://doi.org/10.3390/genes12111829

Gramantieri L, Pollutri D, Gagliardi M, Giovannini C, Quarta S, Ferracin M, Casadei-Gardini A, Callegari E, De Carolis S, Marinelli S et al (2020) MiR-30e-3p influences tumor phenotype through MDM2/TP53 axis and predicts sorafenib resistance in hepatocellular carcinoma. Cancer Res 80:1720–1734. https://doi.org/10.1158/0008-5472.Can-19-0472

Article  CAS  PubMed  Google Scholar 

Gao K, Wang T, Qiao Y, Cui B (2021) MicroRNA-30e-3p inhibits glioma development and promotes drug sensitivity to temozolomide treatment via targeting canopy FGF signaling regulator 2. Cell Cycle 20:2361–2371. https://doi.org/10.1080/15384101.2021.1974789

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang D, Zhu C, Zhang Y, Zheng Y, Ma F, Su L, Shao G (2017) MicroRNA-30e-3p inhibits cell invasion and migration in clear cell renal cell carcinoma by targeting Snail1. Oncol Lett 13:2053–2058. https://doi.org/10.3892/ol.2017.5690

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song A, Yang Y, He H, Sun J, Chang Q, Xue Q (2021) Inhibition of long non-coding RNA KCNQ1OT1 attenuates neuroinflammation and neuronal apoptosis through regulating NLRP3 expression via sponging miR-30e-3p. J Inflamm Res 14:1731–1742. https://doi.org/10.2147/jir.S291274

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif