Neutrophil sub-types in maintaining immune homeostasis during steady state, infections and sterile inflammation

Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13:159–75. https://doi.org/10.1038/nri3399.

Article  CAS  PubMed  Google Scholar 

Aroca-Crevillén A, Adrover JM, Hidalgo A. Circadian features of neutrophil biology. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.00576.

Article  PubMed  PubMed Central  Google Scholar 

Suratt BT, Young SK, Lieber J, Nick JA, Henson PM, Scott Worthen G, et al. Neutrophil maturation and activation determine anatomic site of clearance from circulation. Am J Physiol Lung Cell Mol Physiol. 2001;281(4):L913–21. https://doi.org/10.1152/ajplung.2001.281.4.L913.

Article  CAS  PubMed  Google Scholar 

Joshi MB, Ahamed R, Hegde M, Nair AS, Ramachandra L, Satyamoorthy K. Glucose induces metabolic reprogramming in neutrophils during type 2 diabetes to form constitutive extracellular traps and decreased responsiveness to lipopolysaccharides. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165940. https://doi.org/10.1016/j.bbadis.2020.165940.

Article  CAS  PubMed  Google Scholar 

Adrover JM, del Fresno C, Crainiciuc G, et al. A neutrophil timer coordinates immune defense and vascular protection. Immunity. 2019;50:390-402.e10. https://doi.org/10.1016/j.immuni.2019.01.002.

Article  CAS  PubMed  Google Scholar 

Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5. https://doi.org/10.1126/science.1092385.

Article  CAS  PubMed  Google Scholar 

Díaz-Godínez C, Carrero JC. The state of art of neutrophil extracellular traps in protozoan and helminthic infections. Biosci Rep. 2019;39:1–19. https://doi.org/10.1042/BSR20180916.

Article  Google Scholar 

Su Y, Gao J, Kaur P, Wang Z. Neutrophils and macrophages as targets for development of nanotherapeutics in inflammatory diseases. Pharmaceutics. 2020;12:1–24. https://doi.org/10.3390/pharmaceutics12121222.

Article  CAS  Google Scholar 

Fadok VA, Bratton DL, Konowal A, et al. macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF−, PGE2, and PAF. J Clin Invest. 1998;15;101(4):890–8. https://doi.org/10.1172/JCI1112

Garcia-Romo GS, Caielli S, Vega B, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med. 2011. https://doi.org/10.1126/scitranslmed.3001201.

Article  PubMed  PubMed Central  Google Scholar 

Lande R, Ganguly D, Facchinetti V, et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med. 2011. https://doi.org/10.1126/scitranslmed.3001180.

Article  PubMed  PubMed Central  Google Scholar 

Villanueva E, Yalavarthi S, Berthier CC, et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol. 2011;187:538–52. https://doi.org/10.4049/jimmunol.1100450.

Article  CAS  PubMed  Google Scholar 

Massena S, Christoffersson G, Vågesjö E, et al. Identification and characterization of VEGF-A-responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans. Blood. 2015;126:2016–26. https://doi.org/10.1182/blood-2015-03-631572.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wingender G, Hiss M, Engel I, et al. Neutrophilic granulocytes modulate invariant NKT cell function in mice and humans. J Immunol. 2012;188:3000–8. https://doi.org/10.4049/jimmunol.1101273.

Article  CAS  PubMed  Google Scholar 

Barrientos L, Bignon A, Gueguen C, et al. Neutrophil extracellular traps downregulate lipopolysaccharide-induced activation of monocyte-derived dendritic cells. J Immunol. 2014;193:5689–98. https://doi.org/10.4049/jimmunol.1400586.

Article  CAS  PubMed  Google Scholar 

Scapini P, Nardelli B, Nadali G, et al. G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J Exp Med. 2003;197:297–302. https://doi.org/10.1084/jem.20021343.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowers NL, Helton ES, Huijbregts RPH, et al. Immune suppression by Nneutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. PLoS Pathog. 2014. https://doi.org/10.1371/journal.ppat.1003993.

Article  PubMed  PubMed Central  Google Scholar 

Martinod K, Demers M, Fuchs TA, et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A. 2013;110:8674–9. https://doi.org/10.1073/pnas.1301059110.

Article  PubMed  PubMed Central  Google Scholar 

Guglietta S, Chiavelli A, Zagato E, et al. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nat Commun. 2016. https://doi.org/10.1038/ncomms11037.

Article  PubMed  PubMed Central  Google Scholar 

Boone BA, Orlichenko L, Schapiro NE, et al. The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther. 2015;22:326–34. https://doi.org/10.1038/cgt.2015.21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joshi MB, Baipadithaya G, Balakrishnan A, et al. Elevated homocysteine levels in type 2 diabetes induce constitutive neutrophil extracellular traps. Sci Rep. 2016;6:1–15. https://doi.org/10.1038/srep36362.

Article  CAS  Google Scholar 

Joshi MB, Lad A, Bharath Prasad AS, et al. High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Lett. 2013;587:2241–6. https://doi.org/10.1016/j.febslet.2013.05.053.

Article  CAS  PubMed  Google Scholar 

Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013. https://doi.org/10.1126/scitranslmed.3005580.

Article  PubMed  PubMed Central  Google Scholar 

Khoyratty TE, Ai Z, Ballesteros I, et al. Distinct transcription factor networks control neutrophil-driven inflammation. Nat Immunol. 2021;22:1093–106. https://doi.org/10.1038/s41590-021-00968-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ballesteros I, Rubio-Ponce A, Genua M, et al. Co-option of neutrophil fates by tissue environments. Cell. 2020;183:1282-1297.e18. https://doi.org/10.1016/j.cell.2020.10.003.

Article  CAS  PubMed  Google Scholar 

Carlucci PM, Purmalek MM, Dey AK, et al. Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus. JCI Insight. 2018;3:1–15. https://doi.org/10.1172/jci.insight.99276.

Article  Google Scholar 

Sagiv JY, Michaeli J, Assi S, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015;10:562–73. https://doi.org/10.1016/j.celrep.2014.12.039.

Article  CAS  PubMed  Google Scholar 

Spijkerman R, Jorritsma NKN, Bongers SH, et al. An increase in CD62Ldim neutrophils precedes the development of pulmonary embolisms in COVID-19 patients. Scand J Immunol. 2021. https://doi.org/10.1111/sji.13023.

Article  PubMed  PubMed Central  Google Scholar 

Goldschmeding R, van Dalen CM, Faber N, et al. Further characterization of the NB 1 antigen as a variably expressed 56–62 kD GPI-linked glycoprotein of plasma membranes and specific granules of neutrophils. Br J Haematol. 1992;81:336–45. https://doi.org/10.1111/j.1365-2141.1992.tb08237.x.

Article  CAS  PubMed  Google Scholar 

Welin A, Amirbeagi F, Christenson K, et al. The human neutrophil subsets defined by the presence or absence of OLFM4 both transmigrate into tissue in vivo and give rise to distinct NETs in vitro. PLoS ONE. 2013;8:e69575. https://doi.org/10.1371/journal.pone.0069575.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang D, Chen G, Manwani D, et al. Neutrophil ageing is regulated by the microbiome. Nature. 2015;525:528–32. https://doi.org/10.1038/nature15367.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Douda DN, Khan MA, Grasemann H, Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci U S A. 2015;112:2817–22. https://doi.org/10.1073/pnas.1414055112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thimmappa PY, Nair AS, Najar MA, et al. Quantitative phosphoproteomics reveals diverse stimuli activate distinct signaling pathways during neutrophil activation. Cell Tissue Res. 2022. https://doi.org/10.1007/s00441-022-03636-7.

Article  PubMed  PubMed Central  Google Scholar 

Baum CM, Weissman IL, Tsukamoto AS, et al. Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci U S A. 1992;89(7):2804–8. https://doi.org/10.1073/pnas.89.7.2804.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cvejic A. Mechanisms of fate decision and lineage commitment during haematopoiesis. Immunol Cell Biol. 2016;94:230–5. https://doi.org/10.1038/icb.2015.96.

Article  CAS  PubMed  Google Scholar 

Nandakumar SK, Ulirsch JC, Sankaran VG. Advances in understanding erythropoiesis: Evolving perspectives. Br J Haematol. 2016;173:206–18. https://doi.org/10.1111/bjh.13938.

Article 

留言 (0)

沒有登入
gif