A Numerical Model for Ultrasonic Time-of-Flight Diffraction (TOFD) Testing of Austenitic Welds

Tomlinson, J.R., Wagg, A.R., and Whittle, M.J., Ultrasonic inspection of austenitic welds, Int. Atom. Energ. Agency (IAEA), 1980, paper no. IWGFR–35, pp. 82–95.

Harker, A., Ogilvy, J., and Temple, J., Modeling ultrasonic inspection of austenitic welds, J. Nondestr. Eval., 1990, vol. 9, nos. 2–3, pp. 155–165. https://doi.org/10.1007/BF00566391

Article  Google Scholar 

Edelmann, X., Ultrasonic examination of austenitic welds at reactor pressure vessels, Nucl. Eng. Des., 1991, vol. 129, no. 3, pp. 341–355. https://doi.org/10.1016/0029-5493(91)90143-6

Article  CAS  Google Scholar 

Hudgell, R.J., Worrall, G.M., Ford, J., et al., Ultrasonic characterization and inspection of austenitic welds, Int. J. Pres. Ves. Pip., 1989, vol. 39, no. 4, pp. 247–263. https://doi.org/10.1016/0308-0161(89)90088-4

Article  Google Scholar 

Handbook on the Ultrasonic Examination of Austenitic Welds, Miami: The International Institute of Welding, 1986, pp. 5–18.

Liu, Q. and Wirdelius, H., A 2D model of ultrasonic wave propagation in an anisotropic weld, NDT & E Int., 2007, vol. 40, no. 3, pp. 229–238. https://doi.org/10.1016/j.ndteint.2006.10.004

Article  CAS  Google Scholar 

Seldis, T. and Pecorari, C., Scattering-induced attenuation of an ultrasonic beam in austenitic steel, J. Acoust. Soc. Am., 2000, vol. 108, no. 2, pp. 580–587. https://doi.org/10.1121/1.429589

Article  CAS  Google Scholar 

Schmitz, V., Kröning, M., and Chakhlov, S., Modelling of sound fields through austenitic welds, AIP Conf. Proc., 2000, vol. 509, no. 1, pp. 969–976. https://doi.org/10.1063/1.1306149

Article  Google Scholar 

Chassignole, B., Villard, D., Dubuget, M., et al., Characterization of austenitic stainless steel welds for ultrasonic NDT, AIP Conf. Proc., 2000, vol. 509, no. 1, pp. 1325–1332. https://doi.org/10.1063/1.1307835

Article  CAS  Google Scholar 

Halkjær, S., Sørensen, M.P., and Kristensen, W.D., The propagation of ultrasound in an austenitic weld, Ultrasonics, 2000, vol. 38, nos. 1–8, pp. 256–261. https://doi.org/10.1016/S0041-624X(99)00103-1

Moysan, J., Apfel, A., Corneloup, G., et al., Modelling the grain orientation of austenitic stainless steel multipass welds to improve ultrasonic assessment of structural integrity, Int. J. Pres. Ves. Pip., 2003, vol. 80, no. 2, pp. 77–85. https://doi.org/10.1016/S0308-0161(03)00024-3

Article  CAS  Google Scholar 

Subbaratnam, R., Abraham, S.T., Menaka, M., et al., Time of flight diffraction testing of austenitic stainless steel weldments at elevated temperatures, Mater. Eval., 2008, vol. 66, no. 3, pp. 332–337.

CAS  Google Scholar 

Chassignole, B., Duwig, V., Ploix, M.A., et al., Modelling the attenuation in the ATHENA finite elements code for the ultrasonic testing of austenitic stainless steel welds, Ultrasonics, 2009, vol. 49, no. 8, pp. 653–658. https://doi.org/10.1016/j.ultras.2009.04.001

Article  CAS  Google Scholar 

Chassignole, B., Dupond, O., Fouquet, T., et al., Application of modelling for enhanced ultrasonic inspection of stainless steel welds, Weld. World, 2011, vol. 55, no. 7, pp. 75–82. https://doi.org/10.1007/BF03321310

Article  CAS  Google Scholar 

Tabatabaeipour, S.M. and Honarvar, F., A comparative evaluation of ultrasonic testing of AISI 316Lwelds made by shielded metal arc welding and gas tungsten arc welding processes, J. Mater. Process. Tech., 2010, vol. 210, no. 8, pp. 1043–1050. https://doi.org/10.1016/j.jmatprotec.2010.02.013

Article  CAS  Google Scholar 

Ploix, M.A., Guy, P., Chassignole, B., et al., Measurement of ultrasonic scattering attenuation in austenitic stainless steel welds: Realistic input data for NDT numerical modeling, Ultrasonics, 2014, vol. 54, no. 7, pp. 1729–1736. https://doi.org/10.1016/j.ultras.2014.04.005

Article  CAS  Google Scholar 

Marsac, Q., Gueudré, C., Ploix, M.A., et al., Realistic model to predict the macrostructure of GTAW welds for the simulation of ultrasonic nondestructive testing, J. Nondestr. Eval., 2020, vol. 39, no. 4, pp. 1–3. https://doi.org/10.1007/s10921-020-00724-y

Article  Google Scholar 

Ginzel, E., Ultrasonic Time of Flight Diffraction: Fundamentals & Applications for Nondestructive Testing, Waterloo: Eclipse Scientific Products Inc., 2013, pp. 31–47.

Google Scholar 

Sinclair, A.N., Fortin, J., Honarvar, F., et al., Enhancement of ultrasonic images for sizing of defects by time-of-flight diffraction, NDT & E Int., 2010, vol. 43, no. 3, pp. 258–264.

Article  CAS  Google Scholar 

Shakibi, B., Honarvar, F., Moles, M.D., et al., Resolution enhancement of ultrasonic defect signals for crack sizing, NDT & E Int., 2012, vol. 52, pp. 37–50. https://doi.org/10.1016/j.ndteint.2009.12.003

Article  CAS  Google Scholar 

Habibpour-Ledari, A. and Honarvar, F., Three dimensional characterization of defects by ultrasonic time-of-flight diffraction (ToFD) technique, J. Nondestr. Eval., 2018, vol. 37, no. 1, pp. 1–11. https://doi.org/10.1007/s10921-018-0465-5

Article  Google Scholar 

Charlesworth, J.P. and Temple, J.A.G., Engineering Applications of Ultrasonic Time-of-Flight Diffraction, Philadelphia: Research Studies Press Ltd, 2002, pp. 15–49, 2nd ed.

Google Scholar 

Qin Liu, Wang, Y., Ye, B., et al., Recognition confidence of welding seam defects in TOFD images based on artificial intelligence, Autom. Control Comp. Sci., 2022, vol. 56, pp. 180–188. https://doi.org/10.3103/S0146411622020079

Article  Google Scholar 

Sun, X., Lin, L., and Jin, S., Resolution enhancement in ultrasonic TOFD imaging by combining sparse deconvolution and synthetic aperture focusing technique (Sparse-SAFT), Chin. J. Mech. Eng., 2022, vol. 35, no. 1, pp. 1–9. https://doi.org/10.1186/s10033-022-00768-3

Article  Google Scholar 

Shuohui Chen, Teng, X., Sang, X., et al., Automatic recognition of welding seam defects in TOFD images based on tensor flow, Autom. Control Comp. Sci., 2022, vol. 56, pp. 58–66. https://doi.org/10.3103/S0146411622010035

Article  Google Scholar 

Jin, S.J., Zhang, B., Sun, X., et al., Reduction of layered dead zone in time-of-flight diffraction (TOFD) for pipeline with spectrum analysis method, J. Nondestr. Eval., 2021, vol. 40, no. 2, pp. 1–9. https://doi.org/10.1007/s10921-021-00781-x

Article  Google Scholar 

Bazulin, E.G., TOFD echo signal processing to achieve superresolution, Russ. J. Nondestr. Test., 2021, vol. 57, pp. 352–360. https://doi.org/10.1134/S1061830921050053

Article  Google Scholar 

Bazulin, E.G., Vopilkin, A.K., and Tikhonov, D.S., Determining the coordinates of reflectors in a plane perpendicular to welded joint using echo signals measured by transducers in the TOFD scheme, Russ. J. Nondestr. Test., 2021, vol. 57, pp. 437–445. https://doi.org/10.1134/S106183092106005X

Article  Google Scholar 

Aleshin, N.P., Mogil’ner, L.Yu., Krys’ko, N.V., et al., Studying applicability of TOFD technique to inspection of welded joints in polyethylene pipes, Russ. J. Nondestr. Test., 2020, vol. 56, pp. 775–783. https://doi.org/10.1134/S1061830920100022

Article  Google Scholar 

Jin, S.J., Sun, X., Ma, T.T., et al., Quantitative detection of shallow subsurface defects by using mode-converted waves in Time-of-Flight diffraction technique, J. Nondestr. Eval., 2020, vol. 39, no. 2, pp. 1–8. https://doi.org/10.1007/s10921-020-00676-3

Article  Google Scholar 

Hosseini, S.H. and Honarvar, F., Numerical modeling of the propagation of ultrasonic waves in AISI316L welds made by SMAW and GTAW processes, J. Theor. Appl. Vib. Acoust., 2020, vol. 6, no. 1, pp. 69–80. https://doi.org/10.22064/tava.2021.111405.1141

Article  Google Scholar 

Pamnani, R., Vasudevan, M., Jayakumar, T., et al., Numerical simulation and experimental validation of arc welding of DMR–249A steel, Defence Tech., 2016, vol. 12, no. 4, pp. 305–315. https://doi.org/10.1016/j.dt.2016.01.012

Article  Google Scholar 

German Society for Nondestructive Testing. Handbook on the Ultrasonic Examination of Austenitic Welds, Berlin: DVS Media, 2008, pp. 15–20.

Rose, J.L., Ultrasonic Waves in Solid Media, Cambridge: Cambridge University Press, 2004, pp. 27–33.

Google Scholar 

Lai, M., Rubin, D., and Krempl, E., Introduction to Continuum Mechanics, Oxford: Elsevier, 2010, pp. 201–213, 4th ed.

Google Scholar 

Papadakis, E.P., Patton, T., Tsai, Y.M., et al., The elastic moduli of a thick composite as measured by ultrasonic bulk wave pulse velocity, J. Acoust. Soc. Am., 1991, vol. 89, no. 6, pp. 2753–2757. https://doi.org/10.1121/1.400714

Article  Google Scholar 

Adler, L., Cook, K.V., and Fitting, D.W., Ultrasonic Characterization of Austenitic Welds. Report, Oak Ridge: Oak Ridge National Lab., 1978.

Google Scholar 

Abaqus 6.14, in: Abaqus/CAE User’s Guide, Paris: Dassault Systems, 2014.

Lord, W., Ludwig, R., and You, Z., Developments in ultrasonic modeling with finite element analysis, J. Nondestr. Eval., 1990, vol. 9, no. 2, pp. 129–143. https://doi.org/10.1007/BF00566389

Article  Google Scholar 

Ludwig, R. and Lord, W., Developments in the finite element modeling of ultrasonic NDT phenomena, Rev. Prog. Quant. Nondestr. Eval., 1986, pp. 73–81.

Book  Google Scholar 

Shirmohammadi, F., Bahrami, S., Saadatpour, M., et al., Modeling wave propagation in moderately thick rectangular plates using the spectral element method, Appl. Math. Model., 2015, vol. 39, no. 12, pp. 3481–3495. https://doi.org/10.1016/j.apm.2014.11.044

Article  Google Scholar 

Duan, J.X., Luo, L., Gao, X.R., et al., Hybrid ultrasonic TOFD imaging of weld flaws using wavelet transforms and image registration, J. Nondestr. Eval., 2018, vol. 37, p. 23. https://doi.org/10.1007/s10921-018-0476-2

Article  Google Scholar 

Yeh, F.W.T., Lukomski, T., Haag, J., et al., An alternative ultrasonic time-of-flight diffraction (TOFD) method, NDT & E Int., 2018, vol. 100, pp. 74–83. https://doi.org/10.1016/j.ndteint.2018.08.008

Article  Google Scholar 

Honarvar, F., Sheikhzadeh, H., Moles, M., et al., Improving the time-resolution and signal-to-noise ratio of ultrasonic NDE signals, Ultrasonics, 2004, vol. 41, no. 9, pp. 755–763. https://doi.org/10.1016/j.ultras.2003.09.004

Article  Google Scholar 

Hajian, M. and Honarvar, F., Reflectivity estimation using an expectation maximization algorithm for ultrasonic testing of adhesive bonds, Mater. Eval., 2011, vol. 69, no. 2, pp. 208–219.

Google Scholar 

Mirahmadi, S.J. and Honarvar, F., Application of signal processing techniques to ultrasonic testing of plates by S0 Lamb wave mode, NDT & E Int., 2011, vol. 44, no. 1, pp. 131–137. https://doi.org/10.1016/j.ndteint.2010.10.004

Article  Google Scholar 

留言 (0)

沒有登入
gif