Compressive Thermal Wave Imaging for Subsurface Analysis

Candes, E., Compressive Sampling, Int. Congress Math., 2006, pp. 1433–1452.

Candes, E. and Wakin, M., An introduction to compressive sampling, IEEE Sign. Proces. Mag., 2008, vol. 25, no. 2, pp. 21–30.

Article  Google Scholar 

Davenport, M., Duarte, M., Eldar, Y., and Kutyniok, G., Introduction to compressed sensing, in: Compressed Sensing: Theory and Applications, Cambridge: Cambridge University Press, 2012.

Google Scholar 

de Oliveira, Mateus M., Mahdi Khosravy, Henrique L.M. Monteiro, Thales W. Cabral, Felipe M. Dias, Marcelo A.A. Lima, Leandro R. Manso Silva, and Carlos A. Duque, Compressive sensing of electroencephalogram: a review, Compressive Sens. Health., 2020, pp. 247–268.

Gunasheela, S.K., and Prasantha, H.S., Compressed sensing for image compression: survey of algorithms, In: Emerging Research in Computing, Information, Communication and Applications, Berlin: Springer, 2019, pp. 507–517.

Google Scholar 

Shi Jianing V., Aswin C. Sankaranarayanan, Christoph Studer, and Richard G. Baraniuk., Video compressive sensing for dynamic MRI, BMC Neurosci., 2012, vol. 13, no. 1, p. 1.

Google Scholar 

Maldague, X.P.V., Theory and Practice of Infrared Thermography for Nondestructive Testing, New York: Wiley, 2001.

Google Scholar 

Ciampa Francesco, Pooya Mahmoodi, Fulvio Pinto, and Michele Meo, Recent advances in active infrared thermography for nondestructive testing of aerospace components, Sensors, 2018, vol. 18, no. 2, p. 609.

Article  Google Scholar 

Bison, P.G., Bressan, C., Di Sarno, R., Grinzato, E., Marinetti, S., and Manduchi, G., Thermal NDE of delaminations in plastic materials by neural network processing, QIRT, 1995, vol. 94, pp. 214–219.

Google Scholar 

Ibarra-Castanedo, C., Hernan Benítez, Maldague, X., and Abdelhakim Bendada, Review of thermal-contrast-based signal processing techniques for the nondestructive testing and evaluation of materials by infrared thermography, Proc. Int. Workshop Imag. NDE, Kalpakkam, 2007, pp. 1–6.

Bagavac Petra, Lovre Krstulović-Opara, and Željko Domazet, Infrared thermography of steel structure by FFT, Mater. Today Proc., 2019, vol. 12, pp. 298–303.

Article  Google Scholar 

Garrido Iván, Susana Lagüela, Stefano Sfarra, and Pedro Arias, Development of thermal principles for the automation of the thermographic monitoring of cultural heritage, Sensors, 2020, vol. 20, no. 12, p. 3392.

Article  Google Scholar 

Panella, F.W. and Pirinu, A., Application of pulsed thermography and post-processing techniques for CFRP industrial components, J. Nondestr. Eval., 2021, vol. 40, no. 2, pp. 1–17.

Article  Google Scholar 

Fleuret Julien R., Samira Ebrahimi, Clemente Ibarra-Castanedo, and Xavier P.V. Maldague, Independent component analysis applied on pulsed thermographic data for carbon fiber reinforced plastic inspection: A comparative study, Appl. Sci., 2021, vol. 11, no. 10, p. 4377.

Article  Google Scholar 

Lopez Fernando, Clemente Ibarra-Castanedo, Vicente de Paulo Nicolau, and Xavier Maldague, Optimization of pulsed thermography inspection by partial least-squares regression, NDT & E Int., 2014, vol. 66, pp. 128–138.

Article  Google Scholar 

Subhani, S.K., Suresh, B., and Ghali, V.S., Orthonormal projection approach for depth-resolvable subsurface analysis in non-stationary thermal wave imaging, Insight Nondestr. Test. Condit. Monit., 2016, vol. 58, no. 1, pp. 42–45.

Article  Google Scholar 

Tabatabaei Nima and Andreas Mandelis, Thermal-wave radar: a novel subsurface imaging modality with extended depth-resolution dynamic range, Rev. Sci. Instrum., 2009, vol. 80, no. 3, p. 034902.

Article  Google Scholar 

Wang Fei, Yonghui Wang, Junyan Liu, and Yang Wang, The feature recognition of CFRP subsurface defects using low-energy chirp-pulsed radar thermography, IEEE Trans. Ind. Inform., 2019, vol. 16, no. 8, pp. 5160–5168.

Google Scholar 

Rani Anju and Ravibabu Mulaveesala, Depth resolved pulse compression favourable frequency modulated thermal wave imaging for quantitative characterization of glass fibre reinforced polymer, Infrared Phys. & Technol., 2020, vol. 110, p. 103441.

Article  Google Scholar 

Deane Shakeb, Nicolas P. Avdelidis, Clemente Ibarra-Castanedo, Alex A. Williamson, Stephen Withers, Argyrios Zolotas, Xavier P.V. Maldague, et al., Development of a thermal excitation source used in an active thermographic UAV platform, Quantit. InfraRed Thermography J., 2022, pp. 1–32.

Google Scholar 

Roy Deboshree and Suneet Tuli, Applicability of LED-based excitation source for defect depth resolved frequency modulated thermal wave imaging, IEEE Trans. Instrum. Meas., 2017, vol. 66, no. 10, pp. 2658–2665.

Article  Google Scholar 

Roy Deboshree, Prabhu Babu, and Suneet Tuli, Sparse reconstruction-based thermal imaging for defect detection, IEEE Trans. Instrum. Meas., 2019, vol. 68, no. 11, pp. 4550–4558.

Article  Google Scholar 

Ahmadi Samim, Burgholzer, P., Mayr, G., Jung, P., Caire, G., and Mathias Ziegler, Photothermal super resolution imaging: A comparison of different thermographic reconstruction techniques, NDT & E Int., 2020, vol. 111, p. 102228.

Article  Google Scholar 

Chen, S.S., Donoho, D.L., and Saunders, M.A., Atomic decomposition by basis pursuit, SIAM J. Sci. Comput., 1999, vol. 43, no. 1, pp. 129–159.

Google Scholar 

Subhani, Sk., Rama Chaithanya Tanguturi, and Ghali, V.S., Chirp Z transform based barker coded thermal wave imaging for the characterization of fiber reinforced polymers, Russ. J. Nondestr. Test., 2021, vol. 57, no. 7, pp. 627–634.

Article  CAS  Google Scholar 

Vesala, G.T., Ghali, V.S., Subhani, S., and Naga Prasanthi, Y., Material characterization by enhanced resolution in non-stationary thermal wave imaging, Insight Nondestr. Test. Condit. Monit., 2021, vol. 63, no. 12, pp. 721–726.

Article  CAS  Google Scholar 

Candes, E. and Romberg, J., Practical signal recovery from random projections, IEEE Trans. Sign. Proces., 2005.

Google Scholar 

Candes, E., Romberg, J., and Tao, T., Stable signal recovery from incomplete and inaccurate measurements, Commun. Pure Appl. Math., 2006, vol. 59, no. 8, pp. 1207–1223.

Article  Google Scholar 

Candes, E.J. and Romberg, J., Sparsity and incoherence in compressive sampling, Inverse Probl., 2007, vol. 23 no. 3, pp. 969–985.

Article  Google Scholar 

Candes, E. and Tao, T., Near optimal signal recovery from random projections and universal encoding strategies, Technical Report, 2004, math.CA/0410542.

Pati, Y.C., Rezaifar, R., and Krishnaprasad, P.S., Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, Proc. Rec. 27th Asilomar. Conf. Sign. Syst. Comput., 1993.

Murthy, N.S.S.R. and Muralikrishna, I.V., Comparative Analysis of FFT and DCT Performances in image compression and evaluation of their performances, Indian J. Appl. Res., 2015, vol. 5, no. 11.

留言 (0)

沒有登入
gif