SeATAC: a tool for exploring the chromatin landscape and the role of pioneer factors

Richmond TJ, Davey CA. The structure of DNA in the nucleosome core. Nature. 2003;423:145–50.

Article  CAS  PubMed  Google Scholar 

Struhl K, Segal E. Determinants of nucleosome positioning. Nat Struct Mol Biol. 2013;20:267–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinez-Campa C, Politis P, Moreau J-L, Kent N, Goodall J, Mellor J, et al. Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdf1. Mol Cell. 2004;15:69–81.

Article  CAS  PubMed  Google Scholar 

Lomvardas S, Thanos D. Nucleosome sliding via TBP DNA binding in vivo. Cell. 2001;106:685–96.

Article  CAS  PubMed  Google Scholar 

Churchman LS, Weissman JS. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature. 2011;469:368–73.

Article  CAS  PubMed  Google Scholar 

Kwak H, Fuda NJ, Core LJ, Lis JT. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science. 2013;339:950–3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weber CM, Ramachandran S, Henikoff S. Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. Mol Cell. 2014;53:819–30.

Article  CAS  PubMed  Google Scholar 

Schones DE, Cui K, Cuddapah S, Roh T-Y, Barski A, Wang Z, et al. Dynamic regulation of nucleosome positioning in the human genome. Cell. 2008;132:887–98 Available from:http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&;id=18329373&retmode=ref&cmd=prlinks.

Article  CAS  PubMed  Google Scholar 

Cui K, Zhao K. Genome-wide approaches to determining nucleosome occupancy in metazoans using MNase-Seq. Methods Mol Biol. 2012;833:413–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voong LN, Xi L, Sebeson AC, Xiong B, Wang J-P, Wang X. Insights into nucleosome organization in mouse embryonic stem cells through chemical mapping. Cell. 2016;167:1555-1570.e15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, et al. High-resolution mapping and characterization of open chromatin across the genome. Cell. 2008;132:311–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 2007;17:877–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10:1213–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-Armstrong NA, Vesuna S, et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods. 2017;14:959–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015;523(7561):486–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schep AN, Buenrostro JD, Denny SK, Schwartz K, Sherlock G, Greenleaf WJ. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 2015;25(11):1757–70. https://doi.org/10.1101/gr.192294.115.

Xu B, Li X, Gao X, Jia Y, Liu J, Li F, et al. DeNOPA: decoding nucleosome positions sensitively with sparse ATAC-seq data. Brief Bioinform. 2021;23:bbab469.

Article  Google Scholar 

Chen K, Xi Y, Pan X, Li Z, Kaestner K, Tyler J, Dent S, He X, Li W. DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing. Genome Res. 2013;23(2):341–51. https://doi.org/10.1101/gr.142067.112.

Zhang Y, Shin H, Song JS, Lei Y, Liu XS. Identifying positioned nucleosomes with epigenetic marks in human from ChIP-Seq. BMC Genomics. 2008;9:537.

Article  PubMed  PubMed Central  Google Scholar 

Feng J, Liu T, Qin B, Zhang Y, Liu XS. Identifying ChIP-seq enrichment using MACS. Nat Protoc. 2012;7:1728–40.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.

Article  PubMed  PubMed Central  Google Scholar 

Yan F, Powell DR, Curtis DJ, Wong NC. From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis. Genome Biol. 2020;21:22.

Article  PubMed  PubMed Central  Google Scholar 

Henikoff JG, Belsky JA, Krassovsky K, MacAlpine DM, Henikoff S. Epigenome characterization at single base-pair resolution. Proc Natl Acad Sci U S A. 2011;108:18318–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qu J, Yi G, Zhou H. p63 cooperates with CTCF to modulate chromatin architecture in skin keratinocytes. bioRxiv. 2019;140:525667.

Google Scholar 

Wapinski OL, Lee QY, Chen AC, Li R, Corces MR, Ang CE, et al. Rapid chromatin switch in the direct reprogramming of fibroblasts to neurons. Cell Rep. 2017;20:3236–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gutin J, Sadeh R, Bodenheimer N, Joseph-Strauss D, Klein-Brill A, Alajem A, et al. Fine-resolution mapping of TF binding and chromatin interactions. Cell Rep. 2018;22:2797–807.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brahma S, Henikoff S. RSC-associated subnucleosomes define MNase-sensitive promoters in yeast. Mol Cell. 2019;73:238-249.e3.

Article  CAS  PubMed  Google Scholar 

Bao X, Rubin AJ, Qu K, Zhang J, Giresi PG, Chang HY, et al. A novel ATAC-seq approach reveals lineage-specific reinforcement of the open chromatin landscape via cooperation between BAF and p63. Genome Biol. 2015;16:284.

Article  PubMed  PubMed Central  Google Scholar 

Kingma DP, Welling M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114. 2013.

Kingma DP, Mohamed S, Rezende DJ, Welling M. Semi-supervised learning with deep generative models. arXiv.org. 2014;56:cs.LG-9 (Available from: arXiv.org).

Google Scholar 

Sohn K, Lee H, Yan X. Learning structured output representation using deep conditional generative models. Advances in neural information processing systems. 2015;28.

Tarbell ED, Liu T. HMMRATAC: a Hidden Markov ModeleR for ATAC-seq. Nucleic Acids Res. 2019;21:175.

Google Scholar 

Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN, Aryee MJ, et al. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell. 2018;173(6):1535 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96771.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zenere A, Rundquist O, Gustafsson M, Altafini C. Using high-throughput multi-omics data to investigate structural balance in elementary gene regulatory network motifs. Bioinformatics. 2021;38:173–8.

Article  PubMed  PubMed Central  Google Scholar 

Duren Z, Chen X, Xin J, Wang Y, Wong W. Time course regulatory analysis based on paired expression and chromatin accessibility data. Genome Res. 2020;30:gr.257063.119.

Article  Google Scholar 

Li D, Liu J, Yang X, Zhou C, Guo J, Wu C, et al. Chromatin accessibility dynamics during iPSC reprogramming. Cell Stem Cell. 2017;21:819-833.e6.

Article  CAS  PubMed  Google Scholar 

Knaupp AS, Buckberry S, Pflueger J, Lim SM, Ford E, Larcombe MR, et al. Transient and permanent reconfiguration of chromatin and transcription factor occupancy drive reprogramming. Cell Stem Cell. 2017;21:834-845.e6.

Article  CAS  PubMed  Google Scholar 

Yagi M, Ji F, Charlton J, Cristea S, Messemer K, Horwitz N, et al. Dissecting dual roles of MyoD during lineage conversion to mature myocytes and myogenic stem cells. Gene Dev. 2021;35:1209–28.

Article  PubMed  PubMed Central  Google Scholar 

Wu L, Zhao G, Xu S, Kuang J, Ming J, Wu G, et al. The nuclear factor CECR2 promotes somatic cell reprogramming by reorganizing the chromatin structure. J Biol Chem. 2021;296:100022.

Article  CAS  PubMed  Google Scholar 

Benchetrit H, Jaber M, Zayat V, Sebban S, Pushett A, Makedonski K, et al. Direct induction of the three pre-implantation blastocyst cell types from fibroblasts. Cell Stem Cell. 2019;24:983-994.e7.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif