Polγ coordinates DNA synthesis and proofreading to ensure mitochondrial genome integrity

Robberson, D. L., Kasamatsu, H. & Vinograd, J. Replication of mitochondrial DNA. Circular replicative intermediates in mouse L cells. Proc. Natl Acad. Sci. USA 69, 737–741 (1972).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berk, A. J. & Clayton, D. A. Mechanism of mitochondrial DNA replication in mouse L-cells: asynchronous replication of strands, segregation of circular daughter molecules, aspects of topology and turnover of an initiation sequence. J. Mol. Biol. 86, 801–824 (1974).

Article  CAS  PubMed  Google Scholar 

Lim, S. E., Longley, M. J. & Copeland, W. C. The mitochondrial p55 accessory subunit of human DNA polymerase γ enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J. Biol. Chem. 274, 38197–38203 (1999).

Article  CAS  PubMed  Google Scholar 

Yin, Y. W. Structural insight on processivity, human disease and antiviral drug toxicity. Curr. Opin. Struct. Biol. 21, 83–91 (2011).

Article  CAS  PubMed  Google Scholar 

Lee, Y. S., Kennedy, W. D. & Yin, Y. W. Structural insights into human mitochondrial DNA replication and disease-related polymerase mutations. Cell 139, 312–324 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szymanski, M. R. et al. Structural basis for processivity and antiviral drug toxicity in human mitochondrial DNA replicase. EMBO J. 34, 1959–1970 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sohl, C. D. et al. Probing the structural and molecular basis of nucleotide selectivity by human mitochondrial DNA polymerase γ. Proc. Natl Acad. Sci. USA 112, 8596–8601 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson, A. A. & Johnson, K. A. Exonuclease proofreading by human mitochondrial DNA polymerase. J. Biol. Chem. 276, 38097–38107 (2001).

Article  CAS  PubMed  Google Scholar 

Lee, Y. S. et al. Each monomer of the dimeric accessory protein for human mitochondrial DNA polymerase has a distinct role in conferring processivity. J. Biol. Chem. 285, 1490–1499 (2010).

Article  CAS  PubMed  Google Scholar 

Wu, P., Nossal, N. & Benkovic, S. J. Kinetic characterization of a bacteriophage T4 antimutator DNA polymerase. Biochemistry 37, 14748–14755 (1998).

Article  CAS  PubMed  Google Scholar 

Reha-Krantz, L. J. Regulation of DNA polymerase exonucleolytic proofreading activity: studies of bacteriophage T4 ‘antimutator’ DNA polymerases. Genetics 148, 1551–1557 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hadjimarcou, M. I., Kokoska, R. J., Petes, T. D. & Reha-Krantz, L. J. Identification of a mutant DNA polymerase δ in Saccharomyces cerevisiae with an antimutator phenotype for frameshift mutations. Genetics 158, 177–186 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foury, F. & Szczepanowska, K. Antimutator alleles of yeast DNA polymerase γ modulate the balance between DNA synthesis and excision. PLoS ONE 6, e27847 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, Y. S., Johnson, K. A., Molineux, I. J. & Yin, Y. W. A single mutation in human mitochondrial DNA polymerase Pol γA affects both polymerization and proofreading activities of only the holoenzyme. J. Biol. Chem. 285, 28105–28116 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrari, G. et al. Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase-γA. Brain 128, 723–731 (2005).

Article  PubMed  Google Scholar 

Trifunovic, A. et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).

Article  CAS  PubMed  Google Scholar 

Bratic, A. et al. Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies. Nat. Commun. 6, 8808 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kunkel, T. A. & Alexander, P. S. The base substitution fidelity of eucaryotic DNA polymerases. Mispairing frequencies, site preferences, insertion preferences, and base substitution by dislocation. J. Biol. Chem. 261, 160–166 (1986).

Article  CAS  PubMed  Google Scholar 

Fortune, J. M. et al. Saccharomyces cerevisiae DNA polymerase δ: high fidelity for base substitutions but lower fidelity for single- and multi-base deletions. J. Biol. Chem. 280, 29980–29987 (2005).

Article  CAS  PubMed  Google Scholar 

Bebenek, A. et al. Interacting fidelity defects in the replicative DNA polymerase of bacteriophage RB69. J. Biol. Chem. 276, 10387–10397 (2001).

Article  CAS  PubMed  Google Scholar 

Wong, I., Patel, S. S. & Johnson, K. A. An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry 30, 526–537 (1991).

Article  CAS  PubMed  Google Scholar 

Johnson, A. A. & Johnson, K. A. Fidelity of nucleotide incorporation by human mitochondrial DNA polymerase. J. Biol. Chem. 276, 38090–38096 (2001).

Article  CAS  PubMed  Google Scholar 

Kimsey, I. J. et al. Dynamic basis for dG•dT misincorporation via tautomerization and ionization. Nature 554, 195–201 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Heel, M. & Schatz, M. Fourier shell correlation threshold criteria. J. Struct. Biol. 151, 250–262 (2005).

Article  PubMed  Google Scholar 

Freemont, P. S., Friedman, J. M., Beese, L. S., Sanderson, M. R. & Steitz, T. A. Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc. Natl Acad. Sci. USA 85, 8924–8928 (1988).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia, S., Wang, J. & Konigsberg, W. H. DNA mismatch synthesis complexes provide insights into base selectivity of a B family DNA polymerase. J. Am. Chem. Soc. 135, 193–202 (2013).

Article  CAS  PubMed  Google Scholar 

Wu, E. Y. & Beese, L. S. The structure of a high fidelity DNA polymerase bound to a mismatched nucleotide reveals an ‘ajar’ intermediate conformation in the nucleotide selection mechanism. J. Biol. Chem. 286, 19758–19767 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bebenek, K., Pedersen, L. C. & Kunkel, T. A. Replication infidelity via a mismatch with Watson–Crick geometry. Proc. Natl Acad. Sci. USA 108, 1862–1867 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin, P. et al. Incorrect nucleotide insertion at the active site of a G:A mismatch catalyzed by DNA polymerase β. Proc. Natl Acad. Sci. USA 105, 5670–5674 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seeman, N. C., Rosenberg, J. M. & Rich, A. Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl Acad. Sci. USA 73, 804–808 (1976).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berezhna, S. Y., Gill, J. P., Lamichhane, R. & Millar, D. P. Single-molecule Förster resonance energy transfer reveals an innate fidelity checkpoint in DNA polymerase I. J. Am. Chem. Soc. 134, 11261–11268 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hohlbein, J. et al. Conformational landscapes of DNA polymerase I and mutator derivatives establish fidelity checkpoints for nucleotide insertion. Nat. Commun. 4, 2131 (2013).

Article  PubMed  Google Scholar 

Hoekstra, T. P. et al. Switching between exonucleolysis and replication by T7 DNA polymerase ensures high fidelity. Biophys. J. 112, 575–583 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reha-Krantz, L. J. DNA polymerase proofreading: multiple roles maintain genome stability. Biochim. Biophys. Acta 1804, 1049–1063 (2010).

Article  CAS  PubMed  Google Scholar 

Lamichhane, R., Berezhna, S. Y., Gill, J. P., Van der Schans, E. & Millar, D. P. Dynamics of site switching in DNA polymerase. J. Am. Chem. Soc. 135, 4735–4742 (2013).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif