Intrinsic mesoscale properties of a Polycomb protein underpin heterochromatin fidelity

Janssen, A., Colmenares, S. U. & Karpen, G. H. Heterochromatin: guardian of the genome. Annu. Rev. Cell Dev. Biol. 34, 265–288 (2018).

Article  CAS  PubMed  Google Scholar 

Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19, 229–244 (2018).

Article  CAS  PubMed  Google Scholar 

Larson, A. G. et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grau, D. J. et al. Compaction of chromatin by diverse Polycomb group proteins requires localized regions of high charge. Genes Dev. 25, 2210–2221 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lau, M. S. et al. Mutation of a nucleosome compaction region disrupts Polycomb-mediated axial patterning. Science 355, 1081–1084 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Plys, A. J. et al. Phase separation of Polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. Genes Dev. 33, 799–813 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tatavosian, R. et al. Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. J. Biol. Chem. 294, 1451–1463 (2019).

Article  CAS  PubMed  Google Scholar 

Kim, J. & Kingston, R. E. The CBX family of proteins in transcriptional repression and memory. J. Biosci. 45, 16 (2020).

Article  CAS  PubMed  Google Scholar 

Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e21 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strickfaden, H. et al. Condensed chromatin behaves like a solid on the mesoscale in vitro and in living cells. Cell 183, 1772–1784.e13 (2020).

Article  CAS  PubMed  Google Scholar 

Wang, L. et al. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol. Cell 76, 646–659.e6 (2019).

Article  CAS  PubMed  Google Scholar 

Narlikar, G. J. Phase-separation in chromatin organization. J. Biosci. 45, 5 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Erdel, F. et al. Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-driven liquid–liquid phase separation. Mol. Cell 78, 236–249.e7 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dumesic, P. A. et al. Product binding enforces the genomic specificity of a yeast polycomb repressive complex. Cell 160, 204–218 (2015).

Article  CAS  PubMed  Google Scholar 

Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

Article  CAS  PubMed  Google Scholar 

Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel, S. S., Belmont, B. J., Sante, J. M. & Rexach, M. F. Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129, 83–96 (2007).

Article  CAS  PubMed  Google Scholar 

Zhang, Q. et al. Visualizing dynamics of cell signaling in vivo with a phase separation-based kinase reporter. Mol. Cell 69, 334–346.e4 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qamar, S. et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell 173, 720–734.e15 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simon, J. R., Carroll, N. J., Rubinstein, M., Chilkoti, A. & López, G. P. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat. Chem. 9, 509–515 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi, J.-M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

Article  CAS  PubMed  Google Scholar 

Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

Article  CAS  Google Scholar 

Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6, e30294 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Ranganathan, S. & Shakhnovich, E. I. Dynamic metastable long-living droplets formed by sticker-spacer proteins. eLife 9, e56159 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Boeynaems, S. et al. Spontaneous driving forces give rise to protein−RNA condensates with coexisting phases and complex material properties. Proc. Natl Acad. Sci. USA 116, 7889–7898 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan, Y. & Lin, X. Multiple applications of a transient CRISPR–Cas9 coupled with electroporation (TRACE) system in the Cryptococcus neoformans species complex. Genetics 208, 1357–1372 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, M. Y. et al. Short homology-directed repair using optimized Cas9 in the pathogen Cryptococcus neoformans enables rapid gene deletion and tagging. Genetics 220, iyab180 (2022).

Article  PubMed  Google Scholar 

Walther, T. C. et al. The conserved Nup107–160 complex Is critical for nuclear pore complex assembly. Cell 113, 195–206 (2003).

Article  CAS  PubMed  Google Scholar 

Ebrahimi, H. & Cooper, J. P. Finding a place in the SUN: telomere maintenance in a diverse nuclear landscape. Curr. Opin. Cell Biol. 40, 145–152 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McQuin, C. et al. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol. 16, e2005970 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Weissmann, F. et al. biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes. Proc. Natl Acad. Sci. USA 113, E2564–E2569 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanulli, S. et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575, 390–394 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keenen, M. M. et al. HP1 proteins compact DNA into mechanically and positionally stable phase separated domains. eLife 10, e64563 (2021).

Article  CAS 

留言 (0)

沒有登入
gif