Translating eco-evolutionary biology into therapy to tackle antibiotic resistance

Baquero, F. et al. Evolutionary pathways and trajectories in antibiotic resistance. Clin. Microbiol. Rev. 34, e0005019 (2021).

Article  CAS  PubMed  Google Scholar 

Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science https://doi.org/10.1126/science.aam5979 (2018).

Article  PubMed  Google Scholar 

Hernando-Amado, S., Coque, T. M., Baquero, F. & Martinez, J. L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 4, 1432–1442 (2019).

Article  CAS  PubMed  Google Scholar 

Pinheiro, F., Warsi, O., Andersson, D. I. & Lässig, M. Metabolic fitness landscapes predict the evolution of antibiotic resistance. Nat. Ecol. Evol. 5, 677–687 (2021).

Article  PubMed  Google Scholar 

Pal, C., Papp, B. & Lazar, V. Collateral sensitivity of antibiotic-resistant microbes. Trends Microbiol. 23, 401–407 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Imamovic, L. & Sommer, M. O. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci. Transl Med. 5, 204ra132 (2013). This is one of the most thorough studies on collateral sensitivity networks in response to a large set of antibiotics.

Article  PubMed  Google Scholar 

Herencias, C. et al. Collateral sensitivity associated with antibiotic resistance plasmids. eLife https://doi.org/10.7554/eLife.65130 (2021). This article provides seminal information on collateral sensitivity associated with the acquisition of mobile antibiotic resistance genes.

Article  PubMed  PubMed Central  Google Scholar 

Nichol, D. et al. Antibiotic collateral sensitivity is contingent on the repeatability of evolution. Nat. Commun. 10, 334 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Roemhild, R. & Andersson, D. I. Mechanisms and therapeutic potential of collateral sensitivity to antibiotics. PLoS Pathog. 17, e1009172 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allison, K. R., Brynildsen, M. P. & Collins, J. J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473, 216–220 (2011). This article shows how priming bacterial metabolism may help to eliminate bacterial persisters by using antibiotics to which they did not respond.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baquero, F. & Martinez, J. L. Interventions on metabolism: making antibiotic-susceptible bacteria. MBio https://doi.org/10.1128/mBio.01950-17 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Laborda, P., Alcalde-Rico, M., Chini, A., Martinez, J. L. & Hernando-Amado, S. Discovery of inhibitors of Pseudomonas aeruginosa virulence through the search for natural-like compounds with a dual role as inducers and substrates of efflux pumps. Env. Microbiol. https://doi.org/10.1111/1462-2920.15511 (2021).

Article  Google Scholar 

Knoppel, A., Nasvall, J. & Andersson, D. I. Evolution of antibiotic resistance without antibiotic exposure. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.01495-17 (2017). This article shows that bacterial populations can acquire antibiotic resistance even in the absence of antibiotic selective pressure.

Article  PubMed  PubMed Central  Google Scholar 

Baquero, F. Causality in biological transmission: forces and energies. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MTBP-0018-2016 (2018).

Article  PubMed  Google Scholar 

Laxminarayan, R. Antibiotic effectiveness: balancing conservation against innovation. Science 345, 1299–1301 (2014).

Article  CAS  PubMed  Google Scholar 

Szybalski, W. & Bryson, V. Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J. Bacteriol. 64, 489–499 (1952).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Podnecky, N. L. et al. Conserved collateral antibiotic susceptibility networks in diverse clinical strains of Escherichia coli. Nat. Commun. 9, 3673 (2018). This article reports a wide study on the conservation of collateral sensitivity among a diverse set of clinical E. coli isolates.

Article  PubMed  PubMed Central  Google Scholar 

Roemhild, R., Bollenbach, T. & Andersson, D. I. The physiology and genetics of bacterial responses to antibiotic combinations. Nat. Rev. Microbiol. 20, 478–490 (2022).

Article  CAS  PubMed  Google Scholar 

Lázár, V. et al. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nat. Microbiol. 3, 718–731 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Barbosa, C., Beardmore, R., Schulenburg, H. & Jansen, G. Antibiotic combination efficacy (ACE) networks for a Pseudomonas aeruginosa model. PLoS Biol. 16, e2004356 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Munck, C., Gumpert, H. K., Wallin, A. I., Wang, H. H. & Sommer, M. O. Prediction of resistance development against drug combinations by collateral responses to component drugs. Sci. Transl Med. 6, 262ra156 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Jahn, L. J. et al. Compatibility of evolutionary responses to constituent antibiotics drive resistance evolution to drug pairs. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msab006 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Imamovic, L. et al. Drug-driven phenotypic convergence supports rational treatment strategies of chronic infections. Cell 172, 121–134.e14 (2018). This article shows that phenotypic convergence displayed by different mutants can drive collateral sensitivity-based therapeutic strategies.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, S., Lieberman, T. D. & Kishony, R. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc. Natl Acad. Sci. USA 111, 14494–14499 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barbosa, C., Romhild, R., Rosenstiel, P. & Schulenburg, H. Evolutionary stability of collateral sensitivity to antibiotics in the model pathogen Pseudomonas aeruginosa. eLife https://doi.org/10.7554/eLife.51481 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Baym, M., Stone, L. K. & Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351, aad3292 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Barbosa, C. et al. Alternative evolutionary paths to bacterial antibiotic resistance cause distinct collateral effects. Mol. Biol. Evol. 34, 2229–2244 (2017). This article shows that replicate populations of the same bacterial strain can present different evolutionary pathways in the presence of antibiotics and substantial variations in collateral sensitivity.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lazar, V. et al. Bacterial evolution of antibiotic hypersensitivity. Mol. Syst. Biol. 9, 700 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lazar, V. et al. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat. Commun. 5, 4352 (2014).

Article  CAS  PubMed  Google Scholar 

Sørum, V. et al. Evolutionary instability of collateral susceptibility networks in ciprofloxacin-resistant clinical Escherichia coli strains. mBio 13, e0044122 (2022).

Article  PubMed  Google Scholar 

Hernando-Amado, S., Sanz-García, F. & Martínez, J. L. Antibiotic resistance evolution is contingent on the quorum-sensing response in Pseudomonas aeruginosa. Mol. Biol. Evol. 36, 2238–2251 (2019).

Article  CAS  PubMed  Google Scholar 

Vogwill, T., Kojadinovic, M. & MacLean, R. C. Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2016.0151 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Card, K. J., Thomas, M. D., Graves, J. L. Jr, Barrick, J. E. & Lenski, R. E. Genomic evolution of antibiotic resistance is contingent on genetic background following a long-term experiment with Escherichia coli. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2016886118 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Gambello, M. J. & Iglewski, B. H. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol. 173, 3000–3009 (1991).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liakopoulos, A. et al. Allele-specific collateral and fitness effects determine the dynamics of fluoroquinolone resistance evolution. Proc. Natl Acad. Sci. USA 119, e2121768119 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beckley, A. M. & Wright, E. S. Identification of antibiotic pairs that evade concurrent resistance via a retrospective analysis of antimicrobial susceptibility test results. Lancet Microbe 2, e545–e554 (2021).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif