Haptic Recognition of Texture Surfaces Using Semi-Supervised Feature Learning Based on Sparse Representation

Johansson RS, Flanagan JR. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci. 2009;10(5):345–59.

Article  Google Scholar 

Leon JC, Dupeux T, Chardonnet JR, Perret J. Dexterous grasping tasks generated with an add-on end effector of a haptic feedback system. J Comput Inf Sci Eng. 2016;16(3).

Feng K, Xu Q, Tam LM. Design and development of a dexterous bilateral robotic microinjection system based on haptic feedback. IEEE Trans Autom Sci Eng. 2022;1–11.

Seminara L, Gastaldo P, Watt SJ, Valyear KF, Zuher F, Mastrogiovanni F. Active haptic perception in robots: A review. Front Neurorobot. 2016;13, 53.

Pestell N, Lloyd J, Rossiter J, Lepora NF. Dual-modal tactile perception and exploration. IEEE Robot Autom Lett. 2018;3(2):1033–40.

Article  Google Scholar 

Shi Z-W, Ren Z-Y, Wang W-S, Xiao H, Zeng Y-H, Zhu L-Q. Bioinspired tactile perception platform with information encryption function. Chin Phys B. 2022;31(9): 098506.

Pacchierotti C. Cutaneous haptic feedback in robotic teleoperation. Springer; 2015.

Medellin-Castillo HI, Zaragoza-Siqueiros J, Govea-Valladares EH, de la Garza-Camargo H, Lim T, Ritchie JM. Haptic-enabled virtual training in orthognathic surgery. Virtual Reality. 2021;25(1):53–67.

Article  Google Scholar 

Pinzon D, Byrns S, Zheng B. Prevailing trends in haptic feedback simulation for minimally invasive surgery. Surg Innov. 2016;23(4):415–21.

Article  Google Scholar 

Wang D, Guo Y, Liu S, Zhang Y, Xiao J. Haptic display for virtual reality: progress and challenges. Virtual Reality and Intelligent Hardware. 2019;1(2).

Chen Y, Qiu W, Wang X, Zhang M. Tactile rendering of fabric textures based on texture recognition. In: 2019 IEEE THE 2nd International Conference on Micro/Nano Sensors for AI, Healthcare, and Robotics (NSENS), pp. 87–91. IEEE; 2019.

Grunwald M. Human haptic perception: basics and applications. Springer; 2008

Chu V, Mcmahon I, Riano L, Mcdonald CG, He Q, Pereztejada JM, Arrigo M, Darrell T, Kuchenbecker KJ. Robotic learning of haptic adjectives through physical interaction. Robot Auton Syst. 2015;63:279–92.

Article  Google Scholar 

Richardson BA, Kuchenbecker KJ. Improving haptic adjective recognition with unsupervised feature learning. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 3804–3810; 2019. https://doi.org/10.1109/ICRA.2019.8793544.

Liu H, Sun F. Tactile adjective understanding using structured output-associated dictionary learning. In: Robotic tactile perception and understanding, pp. 97–116. Springer; 2018.

Richardson BA, Kuchenbecker KJ. Learning to predict perceptual distributions of haptic adjectives. Front Neurorobot. 2020;13.

Piovarči M, Levin DIW, Rebello J, Chen D, Ďurikovič R, Pfister H, Matusik W, Didyk P. An interaction-aware, perceptual model for non-linear elastic objects. ACM Trans Graph. 2016;35(4). https://doi.org/10.1145/2897824.2925885.

Shao Z, Wu J, Ouyang Q, He C, Cao Z. Multi-layered perceptual model for haptic perception of compliance. Electronics. 2019;8(12):1497.

Article  Google Scholar 

Tymms C, Gardner EP, Zorin D. A quantitative perceptual model for tactile roughness. ACM Trans Graph. 2018.

Shao Z, Juan WU, Ouyang Q. Analysis of relevant quality metrics and physical parameters in softness perception and assessment system. IEICE Trans Inf Syst. 2019;10:2013–24.

Article  Google Scholar 

Gao Y, Hendricks LA, Kuchenbecker KJ, Darrell T. Deep learning for tactile understanding from visual and haptic data. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 536–543; 2016. https://doi.org/10.1109/ICRA.2016.7487176.

Ji H, Li S, Wang J, Ruan Z. Improving teleoperation through human-aware haptic feedback: a distinguishable and interpretable physical interaction based on the contact state. IEEE Trans Hum Mach Syst. 2022.

Lederman SJ, Klatzky RL. Extracting object properties through haptic exploration. Acta Physiol (Oxf). 1993;84(1):29–40.

Google Scholar 

Klatzky R, Reed CL. Haptic exploration. In: Scholarpedia of Touch, pp. 177–183. Springer; 2016.

Strese M, Brudermueller L, Kirsch J, Steinbach E. Haptic material analysis and classification inspired by human exploratory procedures. IEEE Trans Haptics. 2020;13(2):404–24. https://doi.org/10.1109/TOH.2019.2952118.

Article  Google Scholar 

Hauser SC, Gerling GJ. Force-rate cues reduce object deformation necessary to discriminate compliances harder than the skin. IEEE Trans Haptics. 2018;11(2):232–40.

Article  Google Scholar 

Cesini I, Ndengue JD, Chatelet E, Faucheu J, Massi F. Correlation between friction-induced vibrations and tactile perception during exploration tasks of isotropic and periodic textures. Tribol Int. 2018;120:330–9. https://doi.org/10.1016/j.triboint.2017.12.041.

Article  Google Scholar 

Cavdan M, Doerschner K, Drewing K. The many dimensions underlying perceived softness: how exploratory procedures are influenced by material and the perceptual task. In: 2019 IEEE World Haptics Conference (WHC), pp. 437–442. IEEE; 2019.

Jin L, Gao S, Li Z, Tang J. Hand-crafted features or machine learnt features? Together they improve RGB-D object recognition. In: 2014 IEEE International Symposium on Multimedia, pp. 311–319. IEEE; 2014.

Zeng G, Zhou J, Jia X, Xie W, Shen L. Hand-crafted feature guided deep learning for facial expression recognition. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 423–430. IEEE; 2018.

Sardar A, Umer S, Rout RK, Wang SH, Tanveer M. A secure face recognition for iot-enabled healthcare system. ACM Trans Sen Netw. 2022. https://doi.org/10.1145/3534122. Just Accepted.

Natsume M, Tanaka Y, Tiest W, Kappers A. Skin vibration and contact force in active perception for roughness ratings, pp. 1479–1484; 2017. https://doi.org/10.1109/ROMAN.2017.8172499.

Fishel JA, Loeb GE. Bayesian exploration for intelligent identification of textures. Front Neurorobot. 2012;6:4–4.

Article  Google Scholar 

Sinapov J, Sukhoy V, Sahai R, Stoytchev A. Vibrotactile recognition and categorization of surfaces by a humanoid robot. IEEE Trans Rob. 2011;27(3):488–97.

Article  Google Scholar 

Joolee JB, Uddin MA, Jeon S. Deep multi-model fusion network based real object tactile understanding from haptic data. Appl Intell. 2022;1–16.

Shimoe H, Matsumura K, Noma H, Sohgawa M, Okuyama M. Development of artificial haptic model for human tactile sense using machine learning. In: 2017 IEEE SENSORS, pp. 1–3. IEEE; 2017.

Lederman SJ, Klatzky RL. Hand movements: a window into haptic object recognition. Cogn Psychol. 1987;19(3):342–68.

Article  Google Scholar 

Tiest WMB, Kappers AML. Analysis of haptic perception of materials by multidimensional scaling and physical measurements of roughness and compressibility. Acta Physiol (Oxf). 2006;121(1):1–20.

Google Scholar 

Okamoto S, Nagano H, Yamada Y. Psychophysical dimensions of tactile perception of textures. IEEE Trans Haptics. 2013;6(1):81–93.

Article  Google Scholar 

Cheng E-J, Chou K-P, Rajora S, Jin B-H, Tanveer M, Lin C-T, Young K-Y, Lin W-C, Prasad M. Deep sparse representation classifier for facial recognition and detection system. Pattern Recogn Lett. 2019;125:71–7. https://doi.org/10.1016/j.patrec.2019.03.006.

Article  Google Scholar 

Jalali A, Farsi H. A new steganography algorithm based on video sparse representation. Multimed Tools Appl. 2020;79(3):1821–46.

Article  Google Scholar 

Unnikrishnan P, Govindan V, Kumar SM. Enhanced sparse representation classifier for text classification. Expert Syst Appl. 2019;129:260–72.

Article  Google Scholar 

Arbib MA. The handbook of brain theory and neural networks, 2nd edn. MIT Press, Cambridge, MA, USA; 2002.

Hassen R, Steinbach E. Vibrotactile signal compression based on sparse linear prediction and human tactile sensitivity function. In: 2019 IEEE World Haptics Conference (WHC), pp. 301–306; 2019. https://doi.org/10.1109/WHC.2019.8816110.

Ye X, Choi B, Choi HR, Kang S. Pen-type sensor for surface texture perception. Robot and Human Interactive Communication. 2007;642–647.

Lawrence D, Pao LY, Dougherty AM, Salada MA, Pavlou Y. Rate-hardness: a new performance metric for haptic interfaces 2000;16(4):357–371.

Rosenberg, L.B., Adelstein, B.D.: Perceptual decomposition of virtual haptic surfaces. 1993;46–53.

Shirado, H., Maeno, T.: Modeling of human texture perception for tactile displays and sensors 2005;629–630

Klocker A, Oddo CM, Camboni D, Penta M, Thonnard J. Physical factors influencing pleasant touch during passive fingertip stimulation. PLoS ONE. 2014;9(7):1–10.

Article  Google Scholar 

Okamoto S, Nagano H, Kidoma K, Yamada Y. Specification of individuality in causal relationships among texture-related attributes, emotions, and preferences. Int J Affect Eng. 2016;15(1):11–9.

Article  Google Scholar 

Hashim IHM, Kumamoto S, Takemura K, Maeno T, Okuda S, Mori Y. Tactile evaluation feedback system for multi-layered structure inspired by human tactile perception mechanism. Sensors. 2017;17(11):2601.

Article  Google Scholar 

Zhang T, Zhang X. Injection of traditional hand-crafted features into modern CNN-based models for SAR ship classification: what, why, where, and how. Remote Sens. 2021;13(11):2091.

Article  Google Scholar 

Saba T, Mohamed AS, El-Affendi M, Amin J, Sharif M. Brain tumor detection using fusion of hand crafted and deep learning features. Cogn Syst Res. 2020;59:221–30.

Article  Google Scholar 

Khan MA, Sharif M, Akram T, Raza M, Saba T, Rehman A. Hand-crafted and deep convolutional neural network features fusion and selection strategy: an application to intelligent human action recognition. Appl Soft Comput. 2020;87: 105986.

Su R, Liu T, Sun C, Jin Q, Jennane R, Wei L. Fusing convolutional neural network features with hand-crafted features for osteoporosis diagnoses. Neurocomputing. 2020;385:300–9.

Article  Google Scholar 

留言 (0)

沒有登入
gif